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Comments on the Michael Selection Problem
in Hyperconvex Metric Spaces

Sehie Park

Abstract. Let X be a paracompact space, H a hyperconvex metric space, and Φ :
X ( H a l.s.c. multimap with nonempty closed values. Then Φ admits a continuous
selection under certain restrictions. Such selection results are applied to obtain fixed
point theorems.
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1. Introduction

Recently, in [23], its author showed that a selection problem raised by Michael
has an affirmative solution for hyperconvex metric spaces and that the lower
semicontinuity of the involved multimap in the problem can be weakened. More-
over, as an application of the selection result in [23], a fixed point theorem for
“locally-uniformly weak” lower semicontinuous multimaps was given.

The notion of hyperconvex metric spaces was introduced by Aronszajn and
Panitchpakdi [1] in 1956. Later, in 1979, independently Sine [19] and Soardi [21]
proved that a bounded hyperconvex metric space has the fixed point property
for nonexpansive maps. Since then many interesting works appeared for hyper-
convex metric spaces.

For a long period, the study of hyperconvex metric spaces concentrated on
the relationship with nonexpansive maps (see [20]). On the other hand, Khamsi
[9] established the Knaster-Kuratowski-Mazurkiewicz theorem (in short, KKM
theorem) for hyperconvex metric spaces and applied it to obtain a Schauder
type fixed point theorem. This line of study was followed by Kirk [12], Kirk
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and Shin [13], Kim and Shin [11], and Park [15, 16]. The present author ob-
tained extensions or equivalent forms of the KKM theorem, a Fan-Browder type
fixed point theorem, and other results for hyperconvex metric spaces in [15, 16].
Moreover, Kirk, Sims, and Yuan [14] established the KKM theorem, its equiva-
lent formulations, fixed point theorems, and their applications for hyperconvex
metric spaces. Further related results also appeared in [10, 17, 18].

However, some of the above-mentioned works are simple consequences of
much more general results. In fact, Horvath [3 – 7] initiated the study of
the KKM theory and fixed point theory for C-spaces, which are meaningful
generalizations of convex spaces or convex subsets of topological vector spaces.
Moreover, in [7], he found that hyperconvex metric spaces are particular type
of C-spaces and gave a useful selection theorem on l.s.c. multimaps related
to C-spaces. Later, this selection theorem was extended by Ben-El-Mechaiekh
and Oudadess [2] following some ideas from the celebrated theory on continuous
selections due to Michael.

Our principal aim in the present paper is to show that main results of [23]
are simple consequences of a selection theorem in [2] and a fixed point theorem
in [9, 15]. This simplifies considerably proofs in [23]. Some additional comments
on [23] are also stated.

2. Preliminaries

A metric space (H, d) is said to be hyperconvex if
⋂
α

B(xα, rα) 6= ∅

for any collection {B(xα, rα)} of closed balls in H for which d(xα, xβ) ≤ rα +rβ.
It is known that the space C(E) of all continuous real functions on a Stonian
space E (that is, an extremally disconnected compact Hausdorff space) with
the usual norm is hyperconvex, and that every hyperconvex real Banach space
is a space C(E) for some Stonian space E. Therefore, (Rn, ‖ · ‖∞), l∞, and L∞

are concrete examples of hyperconvex metric spaces. Recently, there appeared
a number of new examples.

Results of Aronszajn and Panitchpakdi [1, Theorem 1′] and Isbell [8, The-
orem 1.1.] are combined in the following.

Theorem 1. A hyperconvex metric space is complete and (freely) contractible.

The concepts of C-spaces, LC-spaces, and LC-metric spaces were intro-
duced and extensively studied by Horvath in a sequence of papers [3 – 7]:

A C-space (X, Γ) is a topological space X with a multimap Γ : 〈X〉 ( X
from the set 〈X〉 of all nonempty finite subsets of X into the power set of X
such that
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1. for each A ∈ 〈X〉, Γ(A) = ΓA is n-connected for all n ≥ 0; and

2. for all A,B ∈ 〈X〉, A ⊂ B implies ΓA ⊂ ΓB.

A subset Y ⊂ X is said to be Γ-convex if A ∈ 〈Y 〉 implies ΓA ⊂ Y .
A C-space (X, Γ) is called an LC-space (or a locally H-convex space [22]) if

X is a Hausdorff uniform space and there exists a basis {Vλ}λ∈I for the uniform
structure such that for each λ ∈ I, {x ∈ X : D ∩ Vλ[x] 6= ∅} is Γ-convex
whenever D ⊂ X is Γ-convex, where

Vλ[x] = {x′ ∈ X : (x, x′) ∈ Vλ}.

For example, any nonempty convex subset X of a locally convex Hausdorff
topological vector space is an LC-space with ΓA = co A, the convex hull of
A ∈ 〈X〉.

A triple (X, d; Γ) is called an LC-metric space whenever (X, d) is a met-
ric space and (X, Γ) is a C-space such that open balls are Γ-convex, and any
neighborhoods {x ∈ X : d(x, Y ) < r} of a Γ-convex set Y ⊂ X is also Γ-convex.

Horvath [7, Theorem 9] obtained the following

Theorem 2. Any hyperconvex metric space H is a complete LC-metric space
with ΓA =

⋂{B : B is a closed ball containing A} for each A ∈ 〈H〉.
Note that ΓA itself is hyperconvex. From now on, a hyperconvex metric

space (H, d; Γ) is simply denoted by H or (H, d). An admissible subset of H
is a nonempty intersection of closed balls in H (see [9]). Moreover, in [23], a
Γ-convex subset of H is said to be sub-admissible.

The following is due to Ben-El-Mechaiekh and Oudadess [2, Theorem 3].

Theorem 3. Let X be paracompact, (Y, d; Γ) a complete LC-metric space, Z ⊂
X with dimX Z ≤ 0, and Φ : X ( Y a lower semicontinuous (l.s.c.) multimap
with nonempty closed values such that Φ(x) is Γ-convex for x /∈ Z. Then Φ
admits a continuous selection f : X → Y such that f(x) ∈ Φ(x) for all x ∈ X.

Recall that dimX Z ≤ 0 means that the covering dimension of Y is ≤ 0 for
every set Y ⊂ Z which is closed in X (see [2]).

It is known that if X is paracompact, (Y, Γ) is a C-space, and Φ : X ( Y
is a multimap such that

1. Φ(x) is nonempty and Γ-convex for each x ∈ X; and

2. Φ−(y) := {x ∈ X : y ∈ Φ(x)} is open for each y ∈ Y (hence Φ is l.s.c.),

then Φ admits a continuous selection (see Horvath [7, Theorem 3]).

A multimap Φ satisfying 1. and 2. is usually called a Browder map. The-
orem 3 tells us that if (Y, Γ) is a complete LC-metric space, the above result
holds for a slightly different class of multimaps.



890 S. Park

3. Main Results

Combining Theorems 1 – 3, we have the following result.

Theorem 4. Let X be a paracompact space, (H, d) a hyperconvex metric space,
Z ⊂ X with dimX Z ≤ 0, and Φ : X ( H a l.s.c. multimap with nonempty
closed values such that Φ(x) is Γ-convex for x 6∈ Z. Then Φ admits a continuous
selection f : X → H.

Example 1. Recall that the set R of reals with the usual Euclidean metric is
hyperconvex. Define a multimap Φ : R ( R by Φ(x) = R for all x ∈ R \Z and
Φ(x) is any nonempty subset of R for each integer x ∈ Z. Then Φ−(y) is open
for each y ∈ R, and hence Φ is l.s.c. It can be seen that Φ has a continuous
selection by observation.

Example 2. For L∞, define a multimap Φ : R ( L∞ by Φ(x) = L∞ for all
x ∈ R\Z and Φ(x) is any nonempty closed subset of L∞ for each integer x ∈ Z.
Then Φ−(y) is open for each y ∈ L∞, and hence Φ is l.s.c. Then Φ has a
continuous selection by Theorem 4.

For Z = ∅, Theorem 4 reduces to the following

Corollary 1. [23, Theorem 2.3] Let X be a paracompact topological space,
(M,d) a hyperconvex metric space and Y a nonempty sub-admissible subset
of M . Further, let T : X ( Y be a multimap such that:

(i) For each x ∈ X, T (x) is a nonempty closed sub-admissible subset of M .

(ii) T is lower semicontinuous.

Then there exists a continuous function f : X → M such that f(x) ∈ T (x) for
all x ∈ X.

Note that, in [23], its author deduced Corollary 1 from a proximate selection
theorem [23, Theorem 2.1]. For a topological space X and a metric space (Y, d),
the author of [23] defined a quasi-lower semicontinuous multimap T : X ( Y
and a locally-uniformly weak lower semicontinuous multimap T : X ( Y .

From the proof of Theorem 2.4 in [23], we get the following

Theorem 5. Let X be a paracompact space, (H, d) a hyperconvex metric space,
and T : X ( H a locally-uniformly weak l.s.c. multimap with nonempty closed
Γ-convex values. Then there exists a l.s.c. multimap T0 : X ( H with nonempty
closed Γ-convex values such that T0(x) ⊂ T (x) for all x ∈ X.

In fact, in the proof of [23, Theorem 2.4], for each r > 0, a multimap
Tr : X ( Y is defined. Let T0(x) :=

⋂
r>0 Tr(x) for each x ∈ X. Then it is

shown that T0 : X ( Y is the required selection of T .

Combining Corollary 1 and Theorem 5, we obtain
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Corollary 2. [23, Theorem 2.4] Let X, (H, d), and T be the same as in Theo-
rem 5. Then there exists a continuous selection f : X → H of T .

Note that in view of Theorem 5, Corollaries 1 and 2 are actually equivalent.
Recall the following fixed point theorem due to the present author et al. [9, 15].

Theorem 6. [15, Theorem 5] Let H be a hyperconvex metric space, X a compact
admissible subset of H, and f : X → H a continuous function. Then f has a
fixed point if one of the following conditions holds for all x ∈ Bd X such that
x 6= f(x):

(i) There exists a y ∈ X such that

d(x, f(x)) > d(y, f(x)).

(ii) There exists a β ∈ (0, 1) such that

X ∩B(f(x), βd(x, f(x)) 6= ∅.

(iii) There exists an α ∈ (0, 1) such that

X ∩B(x, αd(x, f(x))) ∩B(f(x), (1− α)d(x, f(x))) 6= ∅.

(iv) f(x) ∈ X.

Corollary 3. Let H be a hyperconvex metric space and X a compact admissible
subset of H. Then every Browder map Φ : X ( H satisfying Φ(Bd X) ⊂ X
has a fixed point.

Proof. Since X is paracompact and H is a C-space, Φ has a continuous selec-
tion f : X → H by [7, Theorem 3] mentioned above at the end of Section 2.
Moreover, for x ∈ Bd X, we have f(x) ∈ Φ(x) ⊂ Φ(Bd X) ⊂ X. Therefore by
Theorem 6 (iv), f has a fixed point x0 ∈ X, that is, x0 = f(x0) ∈ Φ(x0).

For a Browder map Φ : X ( X, Corollary 3 reduces to the Fan-Browder
type fixed point theorem for hyperconvex metric spaces (see [18]).

Corollary 4. Let H be a hyperconvex metric space, X a compact admissible
subset of H, and Φ : X ( H a (locally-uniformly weak) l.s.c. multimap having
nonempty closed sub-admissible values. Then Φ has a fixed point if one of the
following conditions holds for all x ∈ Bd X such that x 6∈ Φ(x):

(i) There exists a y ∈ X such that

d(x, z) > d(y, z) for all z ∈ Φ(x).

(ii) For each z ∈ Φ(x), there exists a β ∈ (0, 1) such that

X ∩B(z, βd(x, z)) 6= ∅.
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(iii) For each z ∈ Φ(x), there exists an α ∈ (0, 1) such that

X ∩B(x, αd(x, z)) ∩B(z, (1− α)d(x, z)) 6= ∅.

(iv) Φ(x) ⊂ X.

Proof. By Corollaries 1 and 2, there exists a continuous selection f : X → H
of Φ satisfying the requirements of Theorem 6. Then f has a fixed point. This
completes our proof.

In [23, Theorem 2.5 and Corollary 2.6], particular forms of Cases (iii)
and (iv) of Corollary 4 were obtained for a sub-admissible subset X. Recall
that every compact sub-admissible subset X of a hyperconvex metric space is
admissible (see [24, Proposition 1.4]).

Finally, the author of [23] noted that his results are different from the
corresponding results of Horvath [6, 7] on selection problems and fixed point
problems. However, we found that Theorem 2 of Horvath is the original source
of the whole results in this paper.
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