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ALMOST FIXED POINT
THEOREMS OF THE ZIMA TYPE

Jeong-Heon Kim and Sehie Park

Abstract. In this paper, from the KKM theorem, we deduce
almost fixed point theorems for convex-valued u.s.c. (or l.s.c.)
multimaps satisfying certain conditions originated from Zima [19].
From these results, we obtain various fixed point theorems which
extend a number of known results.

1. Introduction

The celebrated Brouwer fixed point theorem in 1912 was extended to
normed vector spaces by Schauder in 1930, to locally convex Hausdorff
topological vector spaces by Tychonoff in 1935, and to topological vec-
tor spaces E on which its topological dual E∗ separates points by Ky
Fan in 1964. On the other hand, the multimap versions of the above
results are obtained by Kakutani, Bohnenblust-Karlin, Fan, Glicksberg,
Himmelberg, and other authors. Moreover, some interesting related re-
sults have appeared on topological vector spaces not necessarily locally
convex; see [15].

In 1977, Zima [19] obtained a generalization of the Schauder fixed
point theorem with respect to para-normed spaces which are not locally
convex.

Let E be a vector space over the real or complex number field. A real
function ‖ · ‖∗ : E → [0,∞) is called a para-norm if and only if:

1) ‖x‖∗ = 0 ⇐⇒ x = 0.
2) ‖ − x‖∗ = ‖x‖∗ for every x ∈ E.
3) ‖x + y‖∗ ≤ ‖x‖∗ + ‖y‖∗ for every x, y ∈ E.
4) If ‖xn − x0‖∗ → 0 and rn → r0, then ‖rnxn − r0x0‖∗ → 0.
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Then (E, ‖ ‖∗) is called a para-normed space. The para-normed space
(E, ‖ ‖∗) is a topological vector space if a basis of neighborhoods of zero
in E is given by the family {Vr}r>0, where Vr = {x ∈ E : ‖x‖∗ < r}.

In fact, Zima has proved a generalization of Schauder fixed point
theorem in a para-normed space for the map f : K → K, where K
is a closed convex and bounded subset of a para-normed space E, f is
completely continuous map, and there exists C > 0 such that ‖tx‖∗ ≤
Ct‖x‖∗ for every t ∈ [0, 1] and every x ∈ f(K)− f(K).

Later Hadžić showed that the set K is of the so-called Zima type.
Since then there have appeared a number of works on fixed point prob-
lems related to conditions of the Zima type; see Hadžić et al. [4–9, 10,
11]. The proofs of those works are based on various methods.

Motivated by the second author’s previous works [16, 17], in the
present paper, we show that most of those fixed point theorems are
consequences of the celebrated Knaster-Kuratowski-Mazurkiewicz (sim-
ply, KKM) theorem [13]. In fact, we obtain new forms of almost fixed
point theorems of the Zima type for upper [resp. lower] semicontinuous
multimaps, and consequently, some fixed point theorems. Our results
generalizes and unifies a number of known results with more transparent
proofs.

2. Preliminary

Let E be a topological vector space (t.v.s) and V a basis of neighbor-
hoods of the origin 0 of E. We say that a subset X of E is of the Zima
type whenever for every U ∈ V there exists V ∈ V such that

co(V ∩ (X −X)) ⊂ U ;

for details, see [7] and references therein.
A multimap or a map T : X ( Y is a function from a set X into the

power set of a set Y with nonempty values T (x) for x ∈ X and fibers
T−(y) for y ∈ Y . Note that x ∈ T−(y) if and only if y ∈ T (x).

For topological spaces X and Y , a map T : X ( Y is said to be
closed if its graph Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is closed in X×Y ,
and compact if the closure T (X) of its range T (X) is compact in Y .

A map T : X ( Y is said to be upper semicontinuous (u.s.c) if for
each closed set B ⊂ Y , the set

T−(B) = {x ∈ X : T (x) ∩B 6= ∅}
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is a closed subset of X; lower semicontinuous (l.s.c) if for each open set
B ⊂ Y , the set T−(B) is open in X; and continuous if it is u.s.c. and
l.s.c.

From the KKM theorem and its open version, we immediately have
the following form as in Fan [2]:

Theorem 1. Let X be a subset of a topological vector space, D a
nonempty subset of X such that coD ⊂ X, and F : D ( X a multimap
with closed [resp. open] values. If

co A ⊂ F (A)

for every nonempty finite subset A of D, then the family {F (x)}x∈D has
the finite intersection property.

It is well known that the closed and open versions of Theorem 1 can
be derived from each other; see [14].

A nonempty subset Y of a topological vector space E is said to be
almost convex [12] if for any V ∈ V and for any finite subset {y1, y2, . . . ,
yn} of Y , there exists a finite subset {z1, z2, . . . , zn} of Y , such that
zi − yi ∈ V for each i = 1, . . . , n and co{z1, z2, . . . , zn} ⊂ Y .

3. Almost fixed point theorems

From Theorem 1, in this section, we deduce a very general almost
fixed point theorem for convex-valued u.s.c. (or l.s.c.) multimaps defined
on almost convex subsets having a certain form of the Zima type and
some of its direct consequences.

The following almost fixed point theorem is our main result in this
paper:

Theorem 2. Let X be a subset of a topological vector space E and
Y an almost convex subset of X. Let T : X ( E be a lower [resp.
upper] semicontinuous multimap such that T (y) is convex for all y ∈ Y .
Suppose that

(Z1) for each U ∈ V, there exists a V ∈ V such that

co(V ∩ (T (Y )− Y )) ⊂ U.

If there is a totally bounded subset K of X such that T (y) ∩K 6= ∅ for
each y ∈ Y and Y ∩K is dense in K, then for any U ∈ V, there exists a
point xU ∈ Y such that T (xU ) ∩ (xU + U) 6= ∅.
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Proof. Let U ∈ V, and V be a symmetric open neighborhood of 0
satisfying (Z1). There exists a symmetric open neighborhood W ∈ V
such that W + W ⊂ V . Since K is totally bounded in E, there exists
a finite subset {x1, x2, . . . , xn} ⊂ K such that K ⊂ ⋃n

i=1(xi + W ).
Moreover, since Y is almost convex and Y ∩K is dense in K, there exists
a finite subset D := {y1, y2, . . . , yn} of Y such that yi−xi ∈ W for each
i = 1, 2, . . . , n, and Z := co{y1, y2, . . . , yn} ⊂ Y . [In fact, choose a
neighborhood W ′ ∈ V such that W ′+W ′ ⊂ W . Since Y ∩K is dense in
K, there is a subset {z1, z2, . . . , zn} of Y ∩K such that zi−xi ∈ W ′ for
each i. Since Y is almost convex, there exists a subset {y1, y2, . . . , yn}
of Y such that yi− zi ∈ W ′ for each i and co{y1, y2, . . . , yn} ⊂ Y . Then
we have yi − xi = (yi − zi) + (zi − xi) ∈ W ′ + W ′ ⊂ W for each i.]

If T is lower semicontinuous, for each i, let

F (yi) := {z ∈ Z : T (z) ∩ (xi + W ) = ∅},
which is closed in Z. Moreover we have

n⋂

i=1

F (yi) = {z ∈ Z : T (z) ∩
n⋃

i=1

(xi + W ) = ∅} = ∅,

since

∅ 6= T (z) ∩K ⊂ T (z) ∩
n⋃

i=1

(xi + W )

for each z ∈ Y .
If T is upper semicontinuous, for each i, let

F (yi) := {z ∈ Z : T (z) ∩ (xi + W ) = ∅},
which is open in Z. Moreover we have

n⋂

i=1

F (yi) = ∅

as in the above.
Now we apply Theorem 1 replacing (X, D) by (Z, {yi}n

i=1). Since
the conclusion of Theorem 1 does not hold, in any case, there exist a
finite subset N := {yi1 , . . . , yik

} of D and xU ∈ co N ⊂ Y such that
xU /∈ F (N) or T (xU ) ∩ (xij + W ) 6= ∅ for all j = 1, . . . , k. Note that

xij + W = xij − yij + yij + W ⊂ yij + W + W ⊂ yij + V
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and hence

T (xU ) ∩ (yij + V ) 6= ∅ or V ∩ (T (xU )− yij ) 6= ∅.

Therefore, there exists a zj ∈ T (xU ) such that

zj − yij ∈ V ∩ (T (xU )− yij ) ⊂ (V ∩ (T (Y )− Y )).

Let xU =
∑k

j=1 αjyij and yU =
∑k

j=1 αjzj , where 0 ≤ αj ≤ 1 and
α1 + α2 + · · ·+ αk = 1. Then yU ∈ co {zj}k

j=1 ⊂ co T (xU ) = T (xU ) and

yU − xU =
k∑

j=1

αj(zj − yij ) ∈ co (V ∩ (T (Y )− Y )) ⊂ U.

This completes our proof. ¤

The point xU in the conclusion of Theorem 2 is called a U -almost
fixed point of the multimap T .

Note that if X = Y then the condition (Z1) reduces to the following:
(Z2) for each U ∈ V, there exists a V ∈ V such that

co(V ∩ (T (X)−X)) ⊂ U.

According to Hadžić [6], a subset K of E is said to be of the Zima type
if for each U ∈ V, there exists a V ∈ V such that co( V ∩ (K −K)) ⊂ U .

Corollary 3. Let E be a topological vector space and K a nonemp-
ty convex and totally bounded subset of E. Let F : K ( E a lower
[resp. upper] semicontinuous map with convex values such that for every
x ∈ K, F (x) ∩K 6= ∅. If K ∪ F (K) is of Zima type, then F has a U -
almost fixed point for every U ∈ V.

Proof. Put X = Y = K in Theorem 2. Since K ∪ F (K) is of the
Zima type, X and T can be replaced by K and F , respectively in the
condition (Z2). Therefore F has a U -almost fixed point. ¤

Examples 1. Hadžić [9, Theorem 2] is the lower semicontinuous case
of Corollary 3.

2. A particular form of Corollary 3, for the case where E is completely
metrizable and X = Y is closed and convex, can be used to obtain [9,
Theorem 1].
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Corollary 4. Let X be a subset of a topological vector space E
and Y an almost convex subset of X. Let T : X ( E be a multimap
such that T (y) is convex for each y ∈ X and T−(z) is open for each
z ∈ E. If the condition (Z1) holds and if there is a totally bounded
subset K of X such that T (y) ∩ K 6= ∅ for each y ∈ Y and Y ∩ K is
dense in K, then for each U ∈ V, T has a U -almost fixed point.

Proof. Simply T is lower semicontinuous. ¤

For a map T : X ( X with X = Y and F (X) = K, Corollary 4
reduces to the following:

Corollary 5. Let X be an almost convex subset of a topological
vector space E, and T : X ( X a multimap such that

(1) T (x) is nonempty and convex for each x ∈ X,
(2) T−(y) is open for each y ∈ X, and
(3) T (X) is totally bounded.

Then for any convex neighborhood U ∈ V, T has a U -almost fixed point.

Note that Corollary 5 improves [16, Corollary 7].
Note that if U itself is convex, then the condition (Z1) holds trivially,

and Theorem 2 reduces to the following:

Theorem 6. Let X be a subset of a topological vector space E and
Y an almost convex subset of X. Let T : X ( E be a lower [resp.
upper] semicontinuous multimap such that T (y) is convex for all y ∈ Y .
If there is a totally bounded subset K of X such that T (y) ∩K 6= ∅ for
each y ∈ Y and Y ∩K is dense in K, then for any convex neighborhood
U ∈ V, there exists a point xU ∈ Y such that T (xU ) ∩ (xU + U) 6= ∅.

Examples 1. Note that Theorem 6 slightly sharpens [16, Theorem
2].

2. In [16], Theorem 6 was shown to extend results of Ky Fan [3],
Lassonde [14], Park and Tan [17], and Himmelberg [12].

For X = Y and T (X) = K, Theorem 6 reduces to the following:

Corollary 7. Let X be an almost convex subset of a topological
vector space E and T : X ( X a lower [resp. upper ] semicontinuous
multimap with convex values. If T (X) is totally bounded, then for any
convex neighborhood U ∈ V, T has a U -almost fixed point.
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4. Fixed point theorems

In this section, we show that Theorem 2 is useful to deduce various
forms of fixed point theorems including that of the Zima type.

For an upper semicontinuous map, we have the following fixed point
theorem:

Theorem 8. Let X be a subset of a Hausdorff topological vector
space E and Y an almost convex subset of X. Let T : X ( X be a
compact upper semicontinuous multimap with closed values such that
T (y) is convex for all y ∈ Y , and Y ∩ T (X) is dense in T (X). If
the condition (Z1) holds, then T has a fixed point x0 ∈ X, that is,
x0 ∈ T (x0).

Proof. Let K = T (X). By Theorem 2, for each U ∈ V , there exist
xU , yU ∈ X such that yU ∈ T (xU ) and yU ∈ xU + U . Since T (X)
is relatively compact, we may assume that the net {yU} converges to
some x0 ∈ X. Since E is Hausdorff, the net {xU} also converges to x0.
Because T is upper semicontinuous with closed values, the graph of T
is closed in X ×X and hence we have x0 ∈ T (x0). This completes our
proof. ¤

Example. If E is locally convex and Y is dense in X, then Theorem
8 reduces to Park and Tan [17, Theorem 1], which extends Himmelberg’s
theorems [12] and many others; see [17].

In particular, for Y = X, we obtain

Theorem 9. Let X be an almost convex subset of a Hausdorff topo-
logical vector space E. Then any compact upper semicontinuous mul-
timap T : X ( X with closed convex values has a fixed point in X
whenever the condition (Z2) holds.

Corollary 10. Let X be an almost convex subset of a locally con-
vex Hausdorff topological vector space E. Then any compact upper
semicontinuous multimap T : X ( X with closed convex values has a
fixed point in X.

If X itself is convex, then Theorem 9 holds under a slightly more
general condition than (Z2):

Theorem 11. Let X be a convex subset of a Hausdorff topological
vector space E. Then any compact upper semicontinuous multimap
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T : X ( X with closed convex values has a fixed point in X whenever
the following holds:

(Z3) for each U ∈ V, there exists a V ∈ V such that

co(V ∩ (T (X)− T (X))) ⊂ U.

Proof. Let K := T (X) and choose D := {x1, x2, . . . , xn} ⊂ K in the
proof of Theorem 2. Then follow the proofs of Theorems 2 and 5. ¤

Note that (Z2) =⇒ (Z3), and (Z3) simply tells that T (X) is of the
Zima type.

Examples 1. Since any subset of a locally convex t.v.s. is of the
Zima type, Theorem 11 generalizes the well-known Himmelberg theorem
[12].

2. Hadžić [4, Corollary 2], [6, Theorem 8] obtained Theorem 11 under
the restriction that X is closed. A number of consequences and appli-
cations of her results were given in [4, 6], and Hadžić and Gajić [11].
Moreover, Arandelović [1] gave a simple proof of a particular form of
Hadžić’s theorem using the KKM–Fan theorem.

3. Hadžić [5, Theorem 2] obtained a particular form of Theorem 11
for a compact convex subset X of a metrizable t.v.s. E.

4. Hadžić [8, Theorem 3] obtained a particular form of Theorem 11
for a subset X of the Zima type in a complete t.v.s. E and applied her
result to some economic problems.

The following is due to Hadžić and Gajić [10]:

Corollary 12. Let K be a nonempty compact subset of a Hausdorrf
topological vector space E such that K is of the Zima type, and T : K (
K an upper semicontinuous map such that K ⊂ T (K), T (K) = co T (K),
T (x) is closed for every x ∈ K, and co T−(x) = T−(x). Then T has a
fixed point in K.

Proof. Let X = T (K). Then T− : X ( K ⊂ X is a compact upper
semicontinuous map with closed convex values. Then (Z3) holds for T−

instead of T . Therefore, by Theorem 11, the map T− has a fixed point.¤

Corollary 12 was used in [11] to obtain some minimax theorems as in
Himmelberg [12].
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Weber [18] defined that a subset K of E is said to be strongly convexly
totally bounded (sctb) if every neighborhood U of 0 in E there is a convex
subset C of U and a finite subset F of E such that K ⊂ F + C.

He showed that if K is totally bounded, then K is sctb if and only
if K is of the Zima type. Therefore in Theorem 11, the condition (Z3)
can be replaced by the following:

(W) T (X) is sctb.
Moreover, Weber also showed that if K is compact and convex, then

K is sctb ⇐⇒ K is the Zima type ⇐⇒ K is locally convex.
From this, we can obtain some particular forms of Theorem 11. For

example, we have the following:

Corollary 13. Let X be a compact, convex and locally convex
subset of a Hausdorff topological vector space E. Then any upper semi-
continuous multimap T : X ( X with nonempty closed convex values
has a fixed point.

Finally, it is well-known that the Brouwer fixed point theorem is
equivalent to the KKM Theorem 1 and, since each of theorems and
corollaries in this paper implies the Brouwer theorem and is deduced
from Theorem 1, they are all equivalent to the Brouwer fixed point
theorem.
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