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Abstract

We show that the KKM principle implies two new general fixed point theorems for the Kakutani
maps or the Browder maps. Consequently, we give unified transparent proofs of many of well-known
results.
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1. Introduction

It is well-known that the Brouwer fixed point theorem, the Sperner lemma, the Knaster—
Kuratowski—Mazurkiewicz theorem (simply, the KKM principle), and many results in
topology and nonlinear analysis are mutually equivalent; see [19]. Especially, in [14], it
was shown that the KKM principle implies the Brouwer theorem.

For topological spaceX¥ andY, amultimapor amapT : X — Y is a function fromX
into the power set of . AmapT : X — Y isupper semicontinuousl.s.c) if for each open
subsetG of Y, the set{x € X: T(x) C G} is open inX; lower semicontinuoud.s.c) if
for each closed subsét of Y, the setf{x € X: T(x) C F} is closed inX; continuousf it
is u.s.c. and l.s.c.; anmbmpactf the rangeT (X) ={y € Y: y € T (x) for somex € X} is
contained in a compact subsetiof
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Let X be a subset of a topological vector space. A multifap — X is called a
Kakutani magf 7 is u.s.c. and has nonempty closed convex valtgs for eachx € X.

There have appeared many fixed point theorems for Kakutani maps. For the literature,
see [15,16].

A multimap T : X — X is called aBrowder map(or a @-map if it has nonempty
convex valued (x) for x € X and open fiber§~(y) ={x € X: ye T(x)} fory € X. The
Browder fixed point theorem [2] has also many generalizations and variations; see [16,17].

In the present paper, we show that most of well-known fixed point theorems for
Kakutani maps or Browder maps are simple consequences of the KKM principle. We
obtain two new general fixed point theorems for Browder maps (Theorem 2.1) and for
Kakutani maps (Theorem 3.1) and, consequently, give unified transparent proofs of many
of well-known results.

The following is the celebrated KKM theorem [14]:

KKM Principle. Let D be the set of vertices of a simpl&xand F: D — S a multimap
with closed(respectively openvalues such that

CON C F(N) foreachN cC D.
Then(..p F(2) #9.
The “open-valued” version of the KKM principle is due to Kim [13] and Shih and
Tan [23], and is now known to be a simple consequence of the original “closed-valued”

version; see [19]. It is also well-known that the following easily follows from the KKM
principle; see Fan [3].

Lemma. Let X be a subset of a topological vector spafea nonempty subset &f such
thatcoD C X, and F: D — X a KKM map with closedrespectively opeyvalues. Then
{F(z2)};ep has the finite intersection property.
Note that a magF : D — X is called aKKM mapif
CON C F(N) foreachN € (D),

where(D) denotes the class of all nonempty finite subsetd of
Recall that a binary relatioR in a setX can be regarded as a multimép X — X and
conversely by the following obvious way:

ye®(x) ifandonlyif (x,y)eR.

Therefore, a poinkg € X is called amaximal elementf a multimap® if @ (xg) = ¥;
see [25].
2. The Browder type theorems

From lemma, we obtain our main result in this section as follows:

Theorem 2.1. Let X be a subset of a topological vector spafea nonempty subset of
such thatoD C X, andS: D — X, T: X — X multimaps. Suppose that
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(1.1) S(z) is open(respectively closedfor eachz € D;
(1.2) coS~(y) ¢ T~ (y) for eachy € X; and
(1.3) X = S(M) for someM e (D).

ThenT has a fixed pointg € X; thatis,xg € T (xp).

Proof. Define a mapF: D — X by F(z) := X\S(z) for eachz € D. Then eachF(z) is
closed (respectively open) i by (1.1), and

N Fo=x\{JS@=x\x=¢

zeM zeM
by (1.3). Therefore, the familyF (z)},cp does not have the finite intersection property,
and hencefF is not a KKM map by lemma. Thus, there exists &ne (D) such that
CON ¢ F(N) = J{X\S(z): z € N}. Hence, there exists am € coN such thatvg € S(z)
forall z € N; thatis,N C S~ (xg). Thereforexp € CON C coS™ (xg) C T~ (x0) by (1.2).
This impliesxg € T (xo) and completes our proof.

Remark. In Theorem 2.1, condition (1.3) can be replaced by the following, without
affecting its conclusion:

(1.3) There exists am € (D) such thatS~ (y) N A # ¢ for eachy € X.
In fact, if for eachy € X, there exists a € A such that; € S™(y) or y € S(z), then we
haveX = S(A). Hence(1.3) implies (1.3).

Moreover, condition (1.3) can be replaced by the following:
(1.3)” coM c S(M) for someM < (D).

In this case7 has a fixed pointg € coM.
From Theorem 2.1, we obtain a number of generalizations of the Browder fixed point
theorem as follows:

Corollary 2.2. Let X be a subset of a topological vector spafea nonempty subset af
such thattoD C X, K a nonempty subset &f, andG : X — D, H : X — X multimaps.
Suppose that

(2.1) for eachx € X, coG(x) C H(x);

(2.2) for eachz € D, G~ (z) is open(respectively closed

(2.3) K CU{G™ (2): z € N} for someN € (D); and

(2.4) there exists a convex subde} of X containingN such that

Ly\K c| J{G™(2): z e m}
for someM € (Ly N D).

ThenH has a fixed point irL y .
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Proof. Let S(z) := G~ (z) for eachz € D andT (x) := H~ (x) for eachx € X. Then (1.1)
holds. Moreover, for each € X, we have

coS (y)=co(G") " (y)=coG(y) CH(y)=T"(y)
by (2.1). Hence condition (1.2) holds. Further,
COMUN)C Ly C(LN\K)UK C U{G‘(z): Z eMUN} =S(MUN),

where M U N € (Ly N D) C (D). Hence condition (1.3) holds. Therefore, by The-
orem 2.1,T = H~ has a fixed pointtg € co(M U N) C Ly, that isxg € T (xg) or
xo € H(xp). This completes our proof.

The following simple consequence of Corollary 2.2 subsumes a number of generaliza-
tions of the Browder fixed point theorem:

Corollary 2.3. Let X be a subset of a topological vector spafea nonempty subset af
such thatcoD C X, K a nonempty compact subset Xf and G: X — D a multimap.
Suppose that

(3.1) K cU{IntxG~(2): z € D}; and

(3.2) for eachN € (D), there exists a compact convex sulisgtof X containingN such
that

Ly\K | J{IntxG~(2): ze Ly N D}.
Then the multimapoG : X — X has a fixed point.

Corollary 2.3 reduces to the following Browder fixed point theorem whengverD =
coD = K = Ly foreachN € (X):

Corollary 2.4. Let X be a compact convex subset of a topological vector space and
T : X — X a map such that

(4.1) T (x) is nonempty and convex for eacle X; and
(4.2) T~ (y) is open for eacly € X.

ThenT has a fixed point.
The following shows that Theorem 2.1 properly generalizes the Browder theorem:
Examples.
(1) LetX :=[0,00) CR andT: X — X be defined byr'(x) := [0, x] for x € X. Then
eachT (x) is nonempty and convex. Moreover, (y) = [y, oo) is closedfor each

y € X. (Here,T is an example of a Kakutani map.) Note ti¥is covered by a finite
number of7 ~(y)’s and hence Theorem 2.1 with= D andS = T works.
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(2) Let X :=[0,100 c R and T : X — X be defined byr'(x) := (x/2,10) for x € X.
Then eachrl' (x) is nonempty and convex. Moreovér, (y) = [0, 2y) if y <5 and
T~ (y) =1[0,10) if y > 5, and hencd ~(y) is openfor eachy € X. (Here,T is an
example of a Browder map.) Note th¥tis covered by a finite number @f~ (y)'s and
hence Theorem 2.1 with = D andS = T works.

Only one of the simplest forms of Corollary 2.2 for the casdasclosedvalues is
known; see Kim [13]:

Corollary 2.5. Let X be a convex subset of a topological vector space Bnd — X a
map such that

(5.1) T(x) is convex for each € X;
(5.2) T~ (y) is closed for eacly € X; and
(5.3) there exists amt € (X) such thatT' (x) N A # ¢ for eachx € X.

ThenT has a fixed point.
From lemma, we have a result on the existence of maximal elements and fixed points:

Theorem 2.6. Let X be a subset of a topological vector spafea nonempty subset of
such thatoD C X,andS: D — X, T:X — X multimaps. Suppose that

(6.1) S(z) is open for each € D;
(6.2) coS—(y) Cc T~ (y) for eachy € X; and
(6.3) T(X) Cc S(M) for someM € (D).

Then either

(&) T~ has a maximal element € X; or
(b) T has afixed point; € X.

Proof. Let K := T(X) and define a magF:D — X by F(z) := K\S(z) for each
z € D. Then eachF (z) is closed by (6.1), and as in the proof of Theorem 2.1, we have
MN.em F(z) =9 by (6.3). HenceF is not a KKM map by Lemma. Thus there exists an
N € (D) suchthatcaV ¢ F(N) =,y (K\S(2)). Hence, there exists ap € coN such
thatxo ¢ K\S(z) forallze N.

Case |. Ifxp € X\K C X\T (X), thenxg ¢ T(X) andT ~ (xg) = 0.

Caselll. Ifxg € K, thenxg € S(z) forall z € N; thatis,N C S~ (xo). Therefore, by (6.2),
X0 € CON C cO0S™ (x0) C T~ (x0). Thisimpliesxg € T (xo) and completes our proof.

Remarks.

(1) Note thatin (6.3)7 (X) denotes the closure @f(X) with respect taX.
(2) Condition (6.3) is implied by any of the following:
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(6.3) X is compact an& = S(D).
(6.3)” T is compact (thatisT (X) is compact inX) and7 (X) C S(D).
(6.3)” T(X)\S(M) is compact for somas € (D) andT (X) C S(D).

From Theorem 2.6, we have the following:
Corollary 2.7. Let X, D, S, andT be the same as in Theorér6. Suppose that

(7.1) X = J{IntxS(z): z € D};
(7.2) coS™(y) c T~ (y) for eachy € X; and
(7.3) T(X)\U{Intx S(z): z € M} is compact for somé/ € (D).

ThenT has a fixed pointg € X.

Proof. Consider the map IgtS: D — X instead ofS in Theorem 2.6. Then (7.1) and
(7.3) = (6.3)"” = (6.3). Note that
co(IntxS)"(y) ccoS~(y) c T (y) foryelX,

and hence (7.2 (6.2). Moreover, by (7.1), for eache X, we have & € D such that
x € IntxS(z) C S(z), and henc&™ (x) # @. Therefore,I ~(x) # @ for all x € X by (7.2)
and the conclusion (a) of Theorem 2.6 cannot occur, and hence, we have the conclusion.

Note that Corollary 2.7 generalizes the Browder fixed point theorem (Corollary 2.4),
which is also known to be equivalent to the Brouwer fixed point theorem.

3. TheKakutani typetheorems
From lemma, we deduce the following main result of this section:

Theorem 3.1. Let X be a convex subset of a topological vector spacdéetT: X — X
be an u.s.c(respectively a |.s.g.multimap with nonempty convex values such that the
following holds

(2) for each neighborhood of 0 in E, there exists a neighborhodd of the origin0 in
E such that

co(VN(T(X)—T(X)))CU.

If T(X) is totally bounded, then for any neighborhobdof O in E, there exists a point
xy € X suchthatl (xy) N (xy + U) # 0.

Proof. Let U be a neighborhood of the origin 0 i@ and V a symmetric open
neighborhood of 0 satisfying (Z). Then there exists a symmetric open neighboWiood
of 0 such that + W c V. Sincek := T(X) is totally bounded inX, there exists a finite
subsetD := {x1, x2, ..., x,} C T(X) such thak c [J!_,(x; + W).
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If T isu.s.c., for each, let
Fxj)={xeX: Tx)N(xi+W)=0}.
Then, eachF (x;) is open inX. Moreover we have
(Fen=xeXx: TN J(xi+W)=01=0
i=1 i=1

sinceT (X) C K c J'_1(x; + W). Now we apply Lemma t& with D defined as above.
Since its conclusion does not hol#,: D — X cannot be a KKM map. Therefore, there
exist a subsetty;,, ..., x; } C D and amnxy € cofx;,, ..., x; } such thaty ¢ Ul}zl F(xi;).
HenceT (xy) N (xi; + W) # ¢ for eachj; and consequently

T(xy)N(xi; +V)#0 or VN (T(xy)—xi;) #9.
If T isl.s.c., for each, let
F(xj):={xeX: T(x)N(x; + W) =0}.

Then, eachF (x;) is closed inX. By a similar method, we obtain the same conclusion.
Therefore, there existsg € T (xy) = coT (xy) such that

zj —xi; € VN (T (xy) —xi;) Cco(V N (T(X) - T(X))).
Sincexy € co{x,-_,}’j‘.zl, there exists ay € co{zj}’;:l € T (xy) such that
yu —xy €co(VN(T(X)—T(X))) CU andyy € T (xp).

Therefore, we havey € X such thatl’ (xy) N (xy + U) # @. This completes our proof.
From Theorem 3.1, we have the following fixed point theorem for Kakutani maps:

Corollary 3.2. Let X be a convex subset of a Hausdorff topological vector space. Then
any compact Kakutani map: X — X has a fixed point inX whenever the conditiofZ)
holds.

Proof. By Theorem 3.1, for each neighborhotidof 0, there existy, yy € X such that
yuy € T(xy) andyy € xy + U. SinceT (X) is relatively compact, we may assume that
the net{yy} converges to somey € K. SinceE is Hausdorff, the corresponding niat; }
also converges t@g. BecauseT is u.s.c. with closed values, the graphTofis closed in

X x T(X) and hence we have) € T (xp). This completes our proof.

According to Had# [7], the setT' (X) in Theorem 3.1 is said to baf the Zima typéf
(2) holds; see [26].
Actually, HadzZt obtained several particular forms of Corollary 3.2 as follows:
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Examples.

(1) Hadzt [4, Corollary 2], [6, Theorem 8] obtained Corollary 3.2 under the restriction
thatX is closed. A number of consequences and applications of her result were givenin
Hadzi [4,6] and Had# and Gajt [9]. Moreover, Arandelovi[1] gave a simple proof
of a particular form of HadZis theorem using the KKM—Fan theorem (Lemma).

(2) Hadzt [5, Theorem 2] obtained a particular form of Corollary 3.2 for a compact
convex subseX of a metrizable topological vector spage

(3) Hadzt [8, Theorem 3] obtained a particular form of Corollary 3.2 for a subisef
the Zima type in a complete topological vector spacand applied her result to some
economic problems.

Note that any subset of a locally convex topological vector space is of the Zima type,
and not conversely; see [6,7]. Therefore, the following well-known result follows from
Corollary 3.2:

Corollary 3.3 (Himmelberg [10]) Let X be a convex subset of a locally convex Hausdorff
topological vector space. Then any compact Kakutani fiaff — X has a fixed point.

The single-valued case of Corollary 3.3 is due to Hukuhara [11].

Weber [24] defined that a subsEtof a topological vector spadg is said to bestrongly
convexly totally bounde@ctb) if every neighborhood’ of O there exist a convex subget
of U and a finite subsef of E such thatk ¢ F + C.

He showed that ifK is totally bounded, therX is sctb iff K is of the Zima type.
Therefore in Theorem 3.1 and Corollary 3.2, condition (Z) can be replaced by the
following:

(W) T(X)isscth

Moreover, he also showed thatkf is compact and convex, then
K isscth < K is of the Zima type<= K is locally convex.

From this, we can obtain some particular forms of Corollary 3.2. For example, we have
the following:

Corollary 3.4. Let X be a compact, convex and locally convex subset of a Hausdorff
topological vector spac&. Then any Kakutani map : X — X has a fixed point.

Note that Rzepecki [22] obtained a general form of Corollary 3.4 for single-valued
compact continuous functions where the dom#iis not necessarily compact.

Furthermore, it is known that any compact convex suliseaif a topological vector
spaceE on which E* separates points df is locally convex; see Weber [24]. Therefore,
Corollary 3.4 implies the following:

Corollary 3.5. Let X be a compact convex subset of a topological vector spaae which
E* separates points af . Then any Kakutani map : X — X has a fixed point.
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Table 1
E f:K—->K F:K —oK
| Brouwer 1912 Kakutani 1941
1] Schauder 1927, 1930 Bohnenblust
and Karlin 1950
1] Tychonoff 1935 Fan 1952
Hukuhara 1950 Glicksberg 1952
Himmelberg 1972
\ Fan 1964 Granas and Liu 1986
Park 1988
\% Zima 1977 Had# 1981, 1982, 1987
Rzepecki 1979
Hadzt 1982

Note that Corollaries 3.3-3.5 are all consequences of the well-known Idzik fixed point
theorem [12], and so is an equivalent form of Corollary 3.2 when&ya is of the Zima
type. Some other fixed point theorems which can be derived from lemma were givenin [18—
21].

It is well-known that the Brouwer fixed point theorem is equivalent to the KKM
principle and, since all results in this paper imply the Brouwer theorem and are deduced
from lemma, they are equivalent to the Brouwer theorem.

Finally, the major particular forms of Corollary 3.2 for Kakutani mapskK — K,
where K is a honempty compact convex subset, can be adequately summarized by the
above diagram.

In the diagramf denotes a (single-valued) continuous function &ral Kakutani map.

K in the class | is a compact convex subset of Euclidean spaces, Il normed vector spaces,
11l locally convex Hausdorff topological vector spaces, and IV topological vector spgaces

on which E* separates points. Moreovéf,in the class V is a convex subset of Hausdorff
topological vector spaces such thatK) and F(K) are relatively compact subsets of

the Zima type. Further, theorems due to Schauder, Hukuhara, Himmelberg, Rzepecki, and
some of HadZ#i in the diagram are stated for compact maps without assuming compactness
of domains. For the literature, see [15-17] and other references in the end of this paper.
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