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Abstract

We show that the KKM principle implies two new general fixed point theorems for the Kak
maps or the Browder maps. Consequently, we give unified transparent proofs of many of well-
results.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that the Brouwer fixed point theorem, the Sperner lemma, the Kna
Kuratowski–Mazurkiewicz theorem (simply, the KKM principle), and many result
topology and nonlinear analysis are mutually equivalent; see [19]. Especially, in [1
was shown that the KKM principle implies the Brouwer theorem.

For topological spacesX andY , amultimapor amapT :X � Y is a function fromX

into the power set ofY . A mapT :X � Y is upper semicontinuous(u.s.c.) if for each open
subsetG of Y , the set{x ∈ X: T (x) ⊂ G} is open inX; lower semicontinuous(l.s.c.) if
for each closed subsetF of Y , the set{x ∈ X: T (x) ⊂ F } is closed inX; continuousif it
is u.s.c. and l.s.c.; andcompactif the rangeT (X) = {y ∈ Y : y ∈ T (x) for somex ∈ X} is
contained in a compact subset ofY .

✩ A part of this work was presented at the AMS Meeting #957, University of Toronto, Special Sess
Nonlinear Functional Analysis, September 23, 2000. This work was supported by Korean Research Fou
Grant (KRF-2002-000-DP0000).
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Let X be a subset of a topological vector space. A multimapT :X � X is called a

rature,

6,17].
s for
. We
d for

f many

nd
lued”
M

Kakutani mapif T is u.s.c. and has nonempty closed convex valuesT (x) for eachx ∈ X.
There have appeared many fixed point theorems for Kakutani maps. For the lite
see [15,16].

A multimap T :X � X is called aBrowder map(or a Φ-map) if it has nonempty
convex valuesT (x) for x ∈ X and open fibersT −(y) = {x ∈ X: y ∈ T (x)} for y ∈ X. The
Browder fixed point theorem [2] has also many generalizations and variations; see [1

In the present paper, we show that most of well-known fixed point theorem
Kakutani maps or Browder maps are simple consequences of the KKM principle
obtain two new general fixed point theorems for Browder maps (Theorem 2.1) an
Kakutani maps (Theorem 3.1) and, consequently, give unified transparent proofs o
of well-known results.

The following is the celebrated KKM theorem [14]:

KKM Principle. Let D be the set of vertices of a simplexS andF :D � S a multimap
with closed(respectively open) values such that

coN ⊂ F(N) for eachN ⊂ D.

Then
⋂

z∈D F(z) �= ∅.

The “open-valued” version of the KKM principle is due to Kim [13] and Shih a
Tan [23], and is now known to be a simple consequence of the original “closed-va
version; see [19]. It is also well-known that the following easily follows from the KK
principle; see Fan [3].

Lemma. LetX be a subset of a topological vector space,D a nonempty subset ofX such
that coD ⊂ X, andF :D � X a KKM map with closed(respectively open) values. Then
{F(z)}z∈D has the finite intersection property.

Note that a mapF :D � X is called aKKM mapif

coN ⊂ F(N) for eachN ∈ 〈D〉,
where〈D〉 denotes the class of all nonempty finite subsets ofD.

Recall that a binary relationR in a setX can be regarded as a multimapΦ :X � X and
conversely by the following obvious way:

y ∈ Φ(x) if and only if (x, y) ∈ R.

Therefore, a pointx0 ∈ X is called amaximal elementof a multimapΦ if Φ(x0) = ∅;
see [25].

2. The Browder type theorems

From lemma, we obtain our main result in this section as follows:

Theorem 2.1. LetX be a subset of a topological vector space,D a nonempty subset ofX
such thatcoD ⊂ X, andS :D � X, T :X � X multimaps. Suppose that



S. Park / Topology and its Applications 135 (2004) 197–206 199

(1.1) S(z) is open(respectively closed) for eachz ∈ D;

rty,

out

point
(1.2) coS−(y) ⊂ T −(y) for eachy ∈ X; and
(1.3) X = S(M) for someM ∈ 〈D〉.
ThenT has a fixed pointx0 ∈ X; that is,x0 ∈ T (x0).

Proof. Define a mapF :D � X by F(z) := X\S(z) for eachz ∈ D. Then eachF(z) is
closed (respectively open) inX by (1.1), and⋂

z∈M

F(z) = X\
⋃
z∈M

S(z) = X\X = ∅

by (1.3). Therefore, the family{F(z)}z∈D does not have the finite intersection prope
and hence,F is not a KKM map by lemma. Thus, there exists anN ∈ 〈D〉 such that
coN �⊂ F(N) = ⋃{X\S(z): z ∈ N}. Hence, there exists anx0 ∈ coN such thatx0 ∈ S(z)

for all z ∈ N ; that is,N ⊂ S−(x0). Therefore,x0 ∈ coN ⊂ coS−(x0) ⊂ T −(x0) by (1.2).
This impliesx0 ∈ T (x0) and completes our proof.

Remark. In Theorem 2.1, condition (1.3) can be replaced by the following, with
affecting its conclusion:

(1.3)′ There exists anA ∈ 〈D〉 such thatS−(y)∩ A �= ∅ for eachy ∈ X.

In fact, if for eachy ∈ X, there exists az ∈ A such thatz ∈ S−(y) or y ∈ S(z), then we
haveX = S(A). Hence(1.3)′ implies(1.3).

Moreover, condition (1.3) can be replaced by the following:

(1.3)′′ coM ⊂ S(M) for someM ∈ 〈D〉.

In this case,T has a fixed pointx0 ∈ coM.
From Theorem 2.1, we obtain a number of generalizations of the Browder fixed

theorem as follows:

Corollary 2.2. LetX be a subset of a topological vector space,D a nonempty subset ofX
such thatcoD ⊂ X, K a nonempty subset ofX, andG :X � D, H :X � X multimaps.
Suppose that

(2.1) for eachx ∈ X, coG(x) ⊂ H(x);
(2.2) for eachz ∈ D, G−(z) is open(respectively closed);
(2.3) K ⊂ ⋃{G−(z): z ∈ N} for someN ∈ 〈D〉; and
(2.4) there exists a convex subsetLN of X containingN such that

LN\K ⊂
⋃{

G−(z): z ∈ M
}

for someM ∈ 〈LN ∩D〉.

ThenH has a fixed point inLN .
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Proof. Let S(z) := G−(z) for eachz ∈ D andT (x) := H−(x) for eachx ∈ X. Then (1.1)

-

raliza-

and

:

holds. Moreover, for eachy ∈ X, we have

coS−(y) = co(G−)−(y) = coG(y) ⊂ H(y) = T −(y)

by (2.1). Hence condition (1.2) holds. Further,

co(M ∪ N) ⊂ LN ⊂ (LN\K) ∪K ⊂
⋃{

G−(z): z ∈ M ∪ N
} = S(M ∪ N),

whereM ∪ N ∈ 〈LN ∩ D〉 ⊂ 〈D〉. Hence condition (1.3)′′ holds. Therefore, by The
orem 2.1,T = H− has a fixed pointx0 ∈ co(M ∪ N) ⊂ LN , that is x0 ∈ T (x0) or
x0 ∈ H(x0). This completes our proof.

The following simple consequence of Corollary 2.2 subsumes a number of gene
tions of the Browder fixed point theorem:

Corollary 2.3. LetX be a subset of a topological vector space,D a nonempty subset ofX
such thatcoD ⊂ X, K a nonempty compact subset ofX, andG :X � D a multimap.
Suppose that

(3.1) K ⊂ ⋃{IntXG−(z): z ∈ D}; and
(3.2) for eachN ∈ 〈D〉, there exists a compact convex subsetLN of X containingN such

that

LN\K ⊂
⋃{

IntXG−(z): z ∈ LN ∩ D
}
.

Then the multimapcoG :X � X has a fixed point.

Corollary 2.3 reduces to the following Browder fixed point theorem wheneverX = D =
coD = K = LN for eachN ∈ 〈X〉:

Corollary 2.4. Let X be a compact convex subset of a topological vector space
T :X � X a map such that

(4.1) T (x) is nonempty and convex for eachx ∈ X; and
(4.2) T −(y) is open for eachy ∈ X.

ThenT has a fixed point.

The following shows that Theorem 2.1 properly generalizes the Browder theorem

Examples.

(1) Let X := [0,∞) ⊂ R andT :X � X be defined byT (x) := [0, x] for x ∈ X. Then
eachT (x) is nonempty and convex. Moreover,T −(y) = [y,∞) is closedfor each
y ∈ X. (Here,T is an example of a Kakutani map.) Note thatX is covered by a finite
number ofT −(y)’s and hence Theorem 2.1 withX = D andS = T works.
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(2) Let X := [0,10) ⊂ R and T :X � X be defined byT (x) := (x/2,10) for x ∈ X.

oints:

ave
an

,

Then eachT (x) is nonempty and convex. Moreover,T −(y) = [0,2y) if y < 5 and
T −(y) = [0,10) if y � 5, and henceT −(y) is openfor eachy ∈ X. (Here,T is an
example of a Browder map.) Note thatX is covered by a finite number ofT −(y)’s and
hence Theorem 2.1 withX = D andS = T works.

Only one of the simplest forms of Corollary 2.2 for the caseS hasclosedvalues is
known; see Kim [13]:

Corollary 2.5. Let X be a convex subset of a topological vector space andT :X � X a
map such that

(5.1) T (x) is convex for eachx ∈ X;
(5.2) T −(y) is closed for eachy ∈ X; and
(5.3) there exists anA ∈ 〈X〉 such thatT (x)∩ A �= ∅ for eachx ∈ X.

ThenT has a fixed point.

From lemma, we have a result on the existence of maximal elements and fixed p

Theorem 2.6. LetX be a subset of a topological vector space,D a nonempty subset ofX
such thatcoD ⊂ X, andS :D � X, T :X � X multimaps. Suppose that

(6.1) S(z) is open for eachz ∈ D;
(6.2) coS−(y) ⊂ T −(y) for eachy ∈ X; and
(6.3) T (X) ⊂ S(M) for someM ∈ 〈D〉.

Then either

(a) T − has a maximal elementx0 ∈ X; or
(b) T has a fixed pointx1 ∈ X.

Proof. Let K := T (X) and define a mapF :D � X by F(z) := K\S(z) for each
z ∈ D. Then eachF(z) is closed by (6.1), and as in the proof of Theorem 2.1, we h⋂

z∈M F(z) = ∅ by (6.3). HenceF is not a KKM map by Lemma. Thus there exists
N ∈ 〈D〉 such that coN �⊂ F(N) = ⋃

z∈N(K\S(z)). Hence, there exists anx0 ∈ coN such
thatx0 /∈ K\S(z) for all z ∈ N .

Case I. Ifx0 ∈ X\K ⊂ X\T (X), thenx0 /∈ T (X) andT −(x0) = ∅.
Case II. Ifx0 ∈ K, thenx0 ∈ S(z) for all z ∈ N ; that is,N ⊂ S−(x0). Therefore, by (6.2)

x0 ∈ coN ⊂ coS−(x0) ⊂ T −(x0). This impliesx0 ∈ T (x0) and completes our proof.

Remarks.

(1) Note that in (6.3),T (X) denotes the closure ofT (X) with respect toX.
(2) Condition (6.3) is implied by any of the following:
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(6.3)′ X is compact andX = S(D).

d

sion.

2.4),

the

t

od
(6.3)′′ T is compact (that is,T (X) is compact inX) andT (X) ⊂ S(D).
(6.3)′′′ T (X)\S(M) is compact for someM ∈ 〈D〉 andT (X) ⊂ S(D).

From Theorem 2.6, we have the following:

Corollary 2.7. LetX, D, S, andT be the same as in Theorem2.6. Suppose that

(7.1) X = ⋃{IntXS(z): z ∈ D};
(7.2) coS−(y) ⊂ T −(y) for eachy ∈ X; and
(7.3) T (X)\⋃{IntXS(z): z ∈ M} is compact for someM ∈ 〈D〉.

ThenT has a fixed pointx0 ∈ X.

Proof. Consider the map IntXS :D � X instead ofS in Theorem 2.6. Then (7.1) an
(7.3) ⇒ (6.3)′′′ ⇒ (6.3). Note that

co(IntXS)−(y) ⊂ coS−(y) ⊂ T −(y) for y ∈ X,

and hence (7.2)⇒ (6.2). Moreover, by (7.1), for eachx ∈ X, we have az ∈ D such that
x ∈ IntXS(z) ⊂ S(z), and henceS−(x) �= ∅. Therefore,T −(x) �= ∅ for all x ∈ X by (7.2)
and the conclusion (a) of Theorem 2.6 cannot occur, and hence, we have the conclu

Note that Corollary 2.7 generalizes the Browder fixed point theorem (Corollary
which is also known to be equivalent to the Brouwer fixed point theorem.

3. The Kakutani type theorems

From lemma, we deduce the following main result of this section:

Theorem 3.1. Let X be a convex subset of a topological vector spaceE. Let T :X � X

be an u.s.c.(respectively a l.s.c.) multimap with nonempty convex values such that
following holds:

(Z) for each neighborhoodU of 0 in E, there exists a neighborhoodV of the origin0 in
E such that

co
(
V ∩ (

T (X) − T (X)
)) ⊂ U.

If T (X) is totally bounded, then for any neighborhoodU of 0 in E, there exists a poin
xU ∈ X such thatT (xU ) ∩ (xU + U) �= ∅.

Proof. Let U be a neighborhood of the origin 0 inE and V a symmetric open
neighborhood of 0 satisfying (Z). Then there exists a symmetric open neighborhoW

of 0 such thatW + W ⊂ V . SinceK := T (X) is totally bounded inX, there exists a finite
subsetD := {x1, x2, . . . , xn} ⊂ T (X) such thatK ⊂ ⋃n

i=1(xi + W).
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If T is u.s.c., for eachi, let

.
re

:

Then

at
F(xi) := {
x ∈ X: T (x) ∩ (

xi + W
) = ∅}

.

Then, eachF(xi) is open inX. Moreover we have

n⋂
i=1

F(xi) =
{
x ∈ X: T (x) ∩

n⋃
i=1

(
xi + W

) = ∅
}

= ∅

sinceT (X) ⊂ K ⊂ ⋃n
i=1(xi + W). Now we apply Lemma toX with D defined as above

Since its conclusion does not hold,F :D � X cannot be a KKM map. Therefore, the
exist a subset{xi1, . . . , xik } ⊂ D and anxU ∈ co{xi1, . . . , xik } such thatxU /∈ ⋃k

j=1F(xij ).

HenceT (xU ) ∩ (xij + W) �= ∅ for eachj ; and consequently

T (xU) ∩ (xij + V ) �= ∅ or V ∩ (
T (xU) − xij

) �= ∅.
If T is l.s.c., for eachi, let

F(xi) := {
x ∈ X: T (x) ∩ (xi + W) = ∅}

.

Then, eachF(xi) is closed inX. By a similar method, we obtain the same conclusion.
Therefore, there exists azj ∈ T (xU) = coT (xU) such that

zj − xij ∈ V ∩ (
T (xU) − xij

) ⊂ co
(
V ∩ (

T (X) − T (X)
))
.

SincexU ∈ co{xij }kj=1, there exists ayU ∈ co{zj }kj=1 ∈ T (xU) such that

yU − xU ∈ co
(
V ∩ (

T (X) − T (X)
)) ⊂ U andyU ∈ T (xU ).

Therefore, we havexU ∈ X such thatT (xU) ∩ (xU + U) �= ∅. This completes our proof.

From Theorem 3.1, we have the following fixed point theorem for Kakutani maps

Corollary 3.2. Let X be a convex subset of a Hausdorff topological vector space.
any compact Kakutani mapT :X � X has a fixed point inX whenever the condition(Z)
holds.

Proof. By Theorem 3.1, for each neighborhoodU of 0, there existxU ,yU ∈ X such that
yU ∈ T (xU) andyU ∈ xU + U . SinceT (X) is relatively compact, we may assume th
the net{yU } converges to somex0 ∈ K. SinceE is Hausdorff, the corresponding net{xU }
also converges tox0. BecauseT is u.s.c. with closed values, the graph ofT is closed in
X × T (X) and hence we havex0 ∈ T (x0). This completes our proof.

According to Hadžíc [7], the setT (X) in Theorem 3.1 is said to beof the Zima typeif
(Z) holds; see [26].

Actually, Hadžíc obtained several particular forms of Corollary 3.2 as follows:
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(1) Hadžíc [4, Corollary 2], [6, Theorem 8] obtained Corollary 3.2 under the restric
thatX is closed. A number of consequences and applications of her result were g
Hadžíc [4,6] and Hadžíc and Gajíc [9]. Moreover, Arandelovíc [1] gave a simple proo
of a particular form of Hadžić’s theorem using the KKM–Fan theorem (Lemma).

(2) Hadžíc [5, Theorem 2] obtained a particular form of Corollary 3.2 for a comp
convex subsetX of a metrizable topological vector spaceE.

(3) Hadžíc [8, Theorem 3] obtained a particular form of Corollary 3.2 for a subsetX of
the Zima type in a complete topological vector spaceE, and applied her result to som
economic problems.

Note that any subset of a locally convex topological vector space is of the Zima
and not conversely; see [6,7]. Therefore, the following well-known result follows f
Corollary 3.2:

Corollary 3.3 (Himmelberg [10]).LetX be a convex subset of a locally convex Hausd
topological vector space. Then any compact Kakutani mapT :X � X has a fixed point.

The single-valued case of Corollary 3.3 is due to Hukuhara [11].
Weber [24] defined that a subsetK of a topological vector spaceE is said to bestrongly

convexly totally bounded(sctb) if every neighborhoodU of 0 there exist a convex subsetC

of U and a finite subsetF of E such thatK ⊂ F +C.
He showed that ifK is totally bounded, thenK is sctb iff K is of the Zima type.

Therefore in Theorem 3.1 and Corollary 3.2, condition (Z) can be replaced b
following:

(W) T (X) is sctb.

Moreover, he also showed that ifK is compact and convex, then

K is sctb ⇐⇒ K is of the Zima type⇐⇒ K is locally convex.

From this, we can obtain some particular forms of Corollary 3.2. For example, we
the following:

Corollary 3.4. Let X be a compact, convex and locally convex subset of a Haus
topological vector spaceE. Then any Kakutani mapT :X � X has a fixed point.

Note that Rzepecki [22] obtained a general form of Corollary 3.4 for single-va
compact continuous functions where the domainX is not necessarily compact.

Furthermore, it is known that any compact convex subsetK of a topological vector
spaceE on whichE∗ separates points ofE is locally convex; see Weber [24]. Therefo
Corollary 3.4 implies the following:

Corollary 3.5. LetX be a compact convex subset of a topological vector spaceE on which
E∗ separates points ofE. Then any Kakutani mapT :X � X has a fixed point.
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vector
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pp.
E f :K → K F :K � K

I Brouwer 1912 Kakutani 1941
II Schauder 1927, 1930 Bohnenblust

and Karlin 1950
III Tychonoff 1935 Fan 1952

Hukuhara 1950 Glicksberg 1952
Himmelberg 1972

IV Fan 1964 Granas and Liu 1986
Park 1988

V Zima 1977 Hadžíc 1981, 1982, 1987
Rzepecki 1979
Hadžíc 1982

Note that Corollaries 3.3–3.5 are all consequences of the well-known Idzik fixed
theorem [12], and so is an equivalent form of Corollary 3.2 wheneverT (X) is of the Zima
type. Some other fixed point theorems which can be derived from lemma were given i
21].

It is well-known that the Brouwer fixed point theorem is equivalent to the K
principle and, since all results in this paper imply the Brouwer theorem and are de
from lemma, they are equivalent to the Brouwer theorem.

Finally, the major particular forms of Corollary 3.2 for Kakutani mapsF :K � K,
whereK is a nonempty compact convex subset, can be adequately summarized
above diagram.

In the diagram,f denotes a (single-valued) continuous function andF a Kakutani map
K in the class I is a compact convex subset of Euclidean spaces, II normed vector s
III locally convex Hausdorff topological vector spaces, and IV topological vector spacE

on whichE∗ separates points. Moreover,K in the class V is a convex subset of Hausdo
topological vector spaces such thatf (K) and F(K) are relatively compact subsets
the Zima type. Further, theorems due to Schauder, Hukuhara, Himmelberg, Rzepec
some of Hadžíc in the diagram are stated for compact maps without assuming compa
of domains. For the literature, see [15–17] and other references in the end of this pa
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