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Abstract. In the KKM theory, many authors adopted the concept of generalized KKM

maps and applied to extend or refine well-known results. In this paper, we give a unified
account for such maps in generalized convex spaces. Our results include the KKM type
theorems and characterizations of generalized KKM maps. We also deduce an equilibrium
theorem implying minimax inequalities, variational inequalities, and so on.

1. Introduction

In 1929, Knaster, Kuratowski and Mazurkiewicz (simply, KKM) first considered the

closed-valued multimap F : D ( ∆n, where D is the set of vertices of the standard

n-simplex ∆n, satisfying

coA ⊂ F (A) for each A ⊂ D.

This kind of multimaps are called the KKM map and has been extended to topological

vector spaces by Fan [4], to convex spaces by Lassonde [12], to topological spaces having

certain families of contractible subsets (or C-spaces or H-spaces) by Horvath [5,6], and

to generalized convex spaces (simply, G-convex spaces) by Park [20-22]. In 1987, Kim [8]

and Shih and Tan [28] considered the open-valued KKM maps and more refined study was

given by Lassonde [13] and Park [17]. Moreover, in 1992, Tian [30] initiated the study of

the so-called transfer closed-valued KKM maps and a number of authors have followed;

see Park [21].

2000 Mathematics Subject Classification. 47H04, 47H10, 49J35, 49J40, 52A07, 54C60, 54H25.

Key words and phrases. KKM theory, generalized convex (G-convex) space, Γ-convex, Γ-convex hull,
generalized γ-quasiconvex [γ-quasiconcave], diagonally γ-quasiconvex [γ-quasiconcave].

Supported in part by the Brain Korea 21 Project.

Typeset by AMS-TEX
1



On the other hand, Kassay and Kolumbán [9] and Chang and Zhang [2] initiated the

study of the so-called generalized KKM maps and it has been followed by Chang and

Ma [1], Yuan [31-33], Tan [29], Lin and Chang [15], Cheng [3], Lee, Cho, and Yuan

[14], Kirk, Sims, and Yuan [10] for various classes of generalized convex spaces. All of

those authors applied their results on KKM type theorems and others to extend or refine

well-known results in the KKM theory [16,19]; for example, variational or quasi variational

inequalities, fixed point theorems, the Ky Fan type minimax inequalities, the von Neumann

type minimax or saddle point theorems, and others.

In the present paper, we are going to give a unified account for generalized KKM maps

in generalized convex spaces. Our arguments are based on recent works of the first author

[20,21], and much more simple and general than known works.

In Section 3, we introduce the KKM type theorems for convex spaces. Section 4 deals

with the definition and characterizations of generalized KKM maps for G-convex spaces,

and new KKM type theorems are deduced for such maps. In Section 5, we show that

generalized KKM maps are closely related to certain general convexity of correspond-

ing extended real-valued functions, and using this fact, deduce an equilibrium theorem

implying minimax inequalities, variational inequalities, and so on.

2. The KKM principle

The following is well-known; see [8,11,12,17,19]:

The KKM Principle. Let D be the set of vertices of ∆n and F : D ( ∆n be a KKM

multimap (that is, coA ⊂ F (A) for each A ⊂ D) with closed [resp. open ] values. Then∩
z∈D F (z) ̸= ∅.

Here ∆n denotes the standard n-simplex with vertices e0, e1, · · · , en.
We show that the closed and the open versions are equivalent:

The open version follows from the closed version. In fact, by Shih [27, Theorem 1], for

a KKM map F : D ( ∆n with open values, there exists a KKM map G : D ( ∆n with

closed values such that G(z) ⊂ F (z) for each z ∈ D.

Conversely, for a KKM map F : D ( ∆n with closed values and for any ε > 0, consider

a map εF : D ( ∆n, where (εF )(z) is the open ε-neighborhood of F (z) with respect to

the Euclidean metric on ∆n. Then εF is a KKM map with open values. Therefore, there

exists an xε ∈
∩

z∈D(εF )(z) ̸= ∅. We may assume that the net {xε} converges to a limit

x0. Note that x0 ∈
∩

z∈D F (z). This completes our proof.
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For the history of generalizations and applications of the KKM principle, see Park

[16,17,19].

3. The KKM theorem for G-convex spaces

It is known that the KKM theorem holds for topological spaces with certain abstract

convexity without any linear structure. The following concept is due to the first author:

A generalized convex space or a G-convex space (X,D; Γ) consists of a topological space

X and a nonempty setD such that for eachN = {z0, z1, · · · , zn} ⊂ D, there exists a subset

Γ(N) = ΓN of X and a continuous function ϕN : ∆n → Γ(N) such that J ⊂ {0, 1, · · · , n}
implies ϕN (∆J) ⊂ Γ({zj : j ∈ J}), where ∆n = co{e0, e1, · · · , en} is the standard n-

simplex and ∆J = co{ej : j ∈ J}.
Let ⟨D⟩ denote the set of all nonempty finite subsets of D.

In case to emphasize X ⊃ D, (X,D; Γ) will be denoted by (X ⊃ D; Γ); and if X = D,

then (X ⊃ X; Γ) by (X; Γ). For a G-convex space (X ⊃ D; Γ),

(1) a subset K of X is said to be Γ-convex if for each N ∈ ⟨D⟩, N ⊂ K implies ΓN ⊂ K;

and

(2) the Γ-convex hull of a subset Y of X, denoted by Γ-co(Y ), is defined by

Γ-co(Y ) :=
∩

{Z ⊂ X : Z is a Γ-convex subset containing Y }.

For details on G-convex spaces and examples, see [18-26], where basic theory was ex-

tensively developed.

For a G-convex space (X,D; Γ), a multimap F : D ( X is called a KKM map if

ΓA ⊂ F (A) for each A ∈ ⟨D⟩.
Now, we deduce a KKM theorem for G-convex spaces; see [20,21]:

Theorem 1. Let (X,D; Γ) be a G-convex space and F : D ( X a multimap such that

(1.1) F has closed [resp. open] values; and

(1.2) F is a KKM map.

Then {F (z)}z∈D has the finite intersection property (More precisely, for each N ∈ ⟨D⟩,
we have ΓN ∩

∩
z∈N F (z) ̸= ∅).

Further, if

(1.3)
∩

z∈M F (z) is compact for some M ∈ ⟨D⟩,
then we have

∩
z∈D F (z) ̸= ∅.
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Proof. Let N := {a0, a1, . . . , an} ∈ ⟨D⟩. Then there exists a continuous function ϕN :

∆n → ΓN such that, for any 0 ≤ i0 < i1 < · · · < ik ≤ n, we have

ϕN (co{ei0 , ei1 , · · · , eik}) ⊂ Γ({ai0 , ai1 , · · · , aik}) ∩ ϕN (∆n).

Since F is a KKM map, it follows that

co{ei0 , ei1 , · · · , eik} ⊂ ϕ−1
N (Γ({ai0 , ai1 , · · · , aik}) ∩ ϕN (∆n))

⊂
k∪

j=0

ϕ−1
N (F (aij ) ∩ ϕN (∆n)).

Since F (aij ) ∩ ϕN (∆n) is closed [resp. open] in the compact subset ϕN (∆n) of ΓN ,

ϕ−1
N (F (aij )∩ϕN (∆n)) is closed [resp. open] in ∆n. Note that ei ( ϕ−1

N (F (ai)∩ϕN (∆n))

is a KKM map on {e0, e1, · · · , en}. Hence, by the KKM principle, we have

n∩
i=0

ϕ−1
N (F (ai) ∩ ΓN ) ⊃

n∩
i=0

ϕ−1
N (F (ai) ∩ ϕN (∆n)) ̸= ∅.

This readily implies ΓN ∩
∩

z∈N F (z) ̸= ∅. The second conclusion is clear.

For a multimap F : D ( X, we define a multimap F : D ( X by F (z) := F (z) for all

z ∈ D, where denotes the closure operation.

From Theorem 1, we have the following equivalent form:

Theorem 1′. Let (X,D; Γ) be a G-convex space and F : D ( X a map such that

(1.1)′
∩

z∈D F (z) =
∩

z∈D F (z) [that is, F is transfer closed-valued ];

(1.2)′ F is a KKM map; and

(1.3)′
∩

z∈M F (z) is compact for some M ∈ ⟨D⟩.

Then we have
∩

z∈D F (z) ̸= ∅.

Proof. Since F : D ( X is closed-valued, by Theorem 1, we have
∩

z∈D F (z) ̸= ∅.
Therefore, condition (1.1)′ ensures the conclusion.

Remark. This kind of KKM theorems originate from Tian [30, Theorem 2]. For some

variations of Theorem 1′, see the first author’s recent work [21].
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4. Generalized KKM maps on G-convex spaces

Motivated by recent works on generalized KKM maps, we introduce the following defi-

nition:

Let (X,D; Γ) be a G-convex space and I a nonempty set. A map F : I ( X is called a

generalized KKM map provided that for each N ∈ ⟨I⟩, there exists a function σ : N → D

such that Γσ(M) ⊂ F (M) for each M ∈ ⟨N⟩.

Examples. (1) A generalized KKM map F : I ( X reduces to a KKM map if I = D

and σ is chosen to be the identity function 1N for each N ∈ ⟨D⟩.
(2) Kassay and Kolumbán [9] first considered the concept of generalized KKM maps.

Let X and Y be convex subsets of topological vector spaces E and F , resp. A map

G : X ( F is called a generalized KKM map by Chang and Zhang [2], if for any finite

set {x1, · · · , xn} ⊂ X, there exists a finite set {y1, · · · , yn} ⊂ F such that any finite

subset {yi1 , · · · , yik} ⊂ {y1, · · · , yn}, 1 ≤ k ≤ n, we have co{yi1 , · · · , yik} ⊂
∪k

j=1 G(xij ).

Note that any KKM map G : X ( E is a generalized KKM map, and a counterexample

ensuring the converse does not hold was given in [2].

(3) Chang and Ma [1] and Kim [7] extended the preceding definition to an H-space

(X; Γ) and I ⊂ X.

(4) Yuan [31] removed the restriction I ⊂ X in the preceding definition.

(5) Tan [29] gave a particular form of generalized KKM maps: Let (X; Γ) be a G-convex

space and I a nonempty set. A map F : I ( X is called a generalized G-KKM map if

for each N ∈ ⟨I⟩, there exists a function σ : N → X such that M ∈ ⟨N⟩ implies Γ-

co(σ(M)) ⊂ F (M). Note that all of his results in [29] were given under some superfluous

restrictions.

(6) Lin and Chang [15] defined as follows: Let D be a nonempty set, (X; Γ) a G-

convex space, and S, T : D ( X. Then T is called a generalized S-KKM map if for each

N ∈ ⟨D⟩, Γ-co(S(N)) ⊂ T (N). It is observed that this kind of maps can be regarded as

a generalized KKM map; see Park [17]. Note that Cheng [3] considered a particular type

of generalized S-KKM map.

(7) Kirk, Sims, and Yuan [10] defined generalized KKM maps for a hyperconvex metric

space X = D.

From Theorem 1, we have the following result related to the finite intersection property

for generalized KKM maps:
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Theorem 2. Let (X,D; Γ) be a G-convex space, I a nonempty set, and F : I ( X a

map with closed [resp. open] values.

(i) If F is a generalized KKM map, then the family of its values has the finite inter-

section property (More precisely, for each N ∈ ⟨I⟩, there exists an N ′ ∈ ⟨D⟩ such that

ΓN ′ ∩
∩

z∈N F (z) ̸= ∅).
(ii) The converse holds whenever X = D and Γ{x} = {x} for all x ∈ X.

Proof. (i) For each N ∈ ⟨I⟩, there exists a function σ : N → D such that M ∈ ⟨N⟩ implies

Γσ(M) ⊂ F (M). Let σ(N) have n + 1 elements. Then there exists a continuous function

ϕN : ∆n → Γσ(N) such that ϕN (∆M ) ⊂ Γσ(M) for each M ∈ ⟨N⟩, where ∆M is the face

of ∆n corresponding to σ(M) ⊂ σ(N). Since Γσ(M) ⊂ F (M) ∩ Γσ(N), we have

∆M ⊂ ϕ−1
N (Γσ(M)) ⊂

∪
{ϕ−1

N (F (z) ∩ Γσ(N)) : z ∈ M}

for each M ∈ ⟨N⟩. Note that F (z) ∩ Γσ(N) is closed [resp. open] in Γσ(N) and hence

ϕ−1
N (F (z)∩Γσ(N)) is closed [resp. open] in ∆n. Moreover, z 7→ ϕ−1

N (F (z)∩Γσ(N)) defines

a KKM map F ′ : N ( ∆n on the G-convex space (∆n, N,Γ′), where Γ′
M := ∆M for each

M ∈ ⟨N⟩. Hence, by Theorem 1, we have∩
z∈N

F ′(z) =
∩
z∈N

ϕ−1
N (F (z) ∩ Γσ(N)) ̸= ∅.

This readily implies

Γσ(N) ∩
∩
z∈N

F (z) ̸= ∅.

Putting N ′ := σ(N) ∈ ⟨D⟩, we have the conclusion.

(ii) Suppose thatX = D and Γ{x} = {x} for all x ∈ X. For anyN ∈ ⟨I⟩, by assumption,

we have an x∗ ∈
∩

z∈N F (z) ̸= ∅. Define a function σ : N → D = X by σ(z) = x∗ for all

z ∈ N . Then for any nonempty subset M of N , we have

Γσ(M) = Γ{x∗} = {x∗} ⊂
∩
z∈N

F (z) ⊂ F (M).

Therefore, F is a generalized KKM map.

Examples. (1) For an H-space (X; Γ) and I ⊂ X, Theorem 2(i) was due to Chang and

Ma [1, Theorems 1 and 4].

(2) For a G-convex space (X; Γ), a particular form of Theorem 2 was obtained by Tan

[29, Theorem 2.2].

The following is a simple consequence of Theorem 2:
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Theorem 3. Let (X; Γ) be a G-convex space with Γ{x} = {x} for all x ∈ X, I a nonempty

set, and F : I ( X a map with closed [resp. open] values. Then F is a generalized KKM

map if and only if {F (z)}z∈I has the finite intersection property (more precisely, for each

N ∈ ⟨I⟩, there exists an N ′ ∈ ⟨X⟩ such that ΓN ′ ∩
∩

z∈N F (z) ̸= ∅).

Examples. (1) Chang and Zhang [2, Theorem 3.1] showed a closed version of Theorem

3 for the case when I is a convex subset of a Hausdorff topological vector space with the

finite topology.

(2) For an H-space (X; Γ) and I ⊂ X, the necessity of Theorem 3 was obtained by

Chang and Ma [1, Theorem 1].

(3) A closed version of Theorem 3 for convex spaces was given in Park [17, Theorem 6].

(4) If X is a Hausdorff topological vector space with the finite topology, Theorem 3

reduces to Lee, Cho, and Yuan [14, Theorems 2.1, 2.2, 2.4 and Corollaries 2.5 and 2.6].

Moreover, they showed that the open version [14, Theorem 2.1] is equivalent to the closed

version [14, Theorem 2.2]. However, this fact is a simple consequence of the corresponding

equivalences in the KKM principle and Theorem 1.

(5) A hyperconvex metric space is a particular form of a C-space, and hence, is a

G-convex space. If X is a hyperconvex metric space with finitely generated topology,

Theorem 3 reduces to Kirk, Sims, and Yuan [10, Theorem 2.1] and Yuan [32, Theorems

2.2 and 2.4], who assumed superfluous restrictions. Their proofs are unnecessarily lengthy

and complicated. The obvious equivalency of the closed and the open versions was also

shown in [32, Theorem 2.3].

Remark. Theorems 2 and 3 hold for a transfer closed-valued map F : I ( X, that is,∩
z∈I F (z) =

∩
z∈I F (z). In fact, in the proof of Theorem 2, we can use Theorem 1′ instead

of Theorem 1.

From Theorem 2, we obtain the following characterization of generalized KKM maps:

Theorem 4. Let (X,D; Γ) be a G-convex space, I a nonempty set, and F : I ( X a

map with closed values such that
∩

z∈M F (z) is compact for some M ∈ ⟨I⟩.
(i) If F is a generalized KKM map, then

∩
z∈I F (z) ̸= ∅.

(ii) If X = D, Γ{x} = {x} for all x ∈ X, and
∩

z∈I F (z) ̸= ∅, then F is a generalized

KKM map.

Example. Tan [29, Theorem 2.3] obtained a version of Theorem 4 for X = D under some

superfluous restriction.
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In view of Theorem 1′, we have a slightly general form of Theorem 4 as follows:

Theorem 4′. Let (X,D; Γ) be a G-convex space, I a nonempty set, and F : I ( X a

transfer closed-valued map such that
∩

z∈M F (z) is compact for some M ∈ ⟨I⟩.
(i) If F is a generalized KKM map, then

∩
z∈I F (z) ̸= ∅.

(ii) If X = D, Γ{x} = {x} for all x ∈ X, and
∩

z∈I F (z) ̸= ∅, then F is a generalized

KKM map.

The following is a simple consequence of Theorem 4:

Theorem 5. Let (X; Γ) be a G-convex space with Γ{x} = {x} for all x ∈ X, I a nonempty

set, and F : I ( X a map with closed values such that
∩

z∈M F (z) is compact for some

M ∈ ⟨I⟩. Then F is a generalized KKM map if and only if
∩

z∈I F (z) ̸= ∅.

Examples. (1) Chang and Zhang [2, Theorem 3.2] obtained Theorem 5 for the case when

I is a convex subset of a Hausdorff topological vector space.

(2) A convex space version of Theorem 1 was given by Park [17, Corollary 1]. Moreover,

a more general compactness condition was shown to work in Theorem 5; see [17, Theorem

7].

(3) If X = D is a hyperconvex metric space, Theorem 4 reduces to Kirk, Sims, and

Yuan [10, Theorem 2.2].

In view of Theorem 1′, we also have a slightly general form of Theorem 5 as follows:

Theorem 5′. Let (X; Γ) be a G-convex space with Γ{x} = {x} for all x ∈ X, I a nonempty

set, and F : I ( X a transfer closed-valued map such that
∩

z∈M F (z) is compact for

some M ∈ ⟨I⟩. Then F is a generalized KKM map if and only if
∩

z∈I F (z) is nonempty

compact.

Examples. (1) Theorem 5′ for H-spaces was first due to Zhou; see Yuan [31].

(2) For a hyperconvex metric space X, Theorem 5′ was due to Kirk, Sims, and Yuan

[10, Theorem 2.5], which is a simple consequence of the preceding one in (1).

5. Analytic formulations of generalized KKM maps

It is well-known that the KKM theory has many applications on equilibrium problems.

Some applicability of our results are based on the fact that generalized KKM maps are

closely related to certain convexity (or concavity) of extended real-valued functions.
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Let I be a nonempty set, (X,D; Γ) be a G-convex space, and f : I × X → R, g :

X × I → R functions. Let γ ∈ R. Then we define as follows:

(i) f is generalized γ-quasiconvex [resp. generalized γ-quasiconcave ] on the first variable

z if for each N ∈ ⟨I⟩, there exists a function σ : N → D such that ∅ ̸= M ⊂ N implies

γ ≤ maxz∈M f(z, x) [resp. γ ≥ minz∈M f(z, x)] for all x ∈ Γσ(M); and

(ii) g is generalized γ-quasiconvex [resp. generalized γ-quasiconcave ] in the second vari-

able z if the function h : I ×X → R defined by h(z, x) = g(x, z) for all (z, x) ∈ I ×X is

generalized γ-quasiconvex [resp. generalized γ-quasiconcave ] in the first variable z.

Note that, for example, f(z, x) is generalized γ-quasiconvex on the first variable z if

and only if f(z, x)− γ is generalized 0-quasiconvex on the first variable.

If I = D and σ = iN : N ↪→ D, the inclusion, for each N ∈ ⟨D⟩, then the above

generalized γ-quasiconvexity [resp. quasiconcavity] is called diagonally γ-quasiconvexity

[resp. diagonally γ-quasiconcavity ].

Examples. (1) For a convex subset X of a topological vector space, the concept of

generalized γ-quasiconvexity is first introduced by Chang and Zhang [2].

(2) For a convex subset X of a topological vector space and I = D ⊂ X, the concept

of diagonally γ-quasiconcavity is first introduced by Tian [30] and more general than the

corresponding one due to Zhou and Chen [34].

(3) For X = D, our generalized γ-quasiconvexity [resp. generalized γ-quasiconcavity]

reduces to the γ-generalized G-quasiconvexity [resp. γ-generalized G-quasiconcavity] due

to Tan [29, Definition 1.8].

(4) IfX = D is a hyperconvex metric space and I is a nonempty finite subset ofX, Kirk–

Sims–Yuan [10] defined the hyper γ-generalized quasiconvexity [resp. the corresponding

quasiconcavity] as above in (2).

The following shows the equivalency of certain concavity [resp. convexity] of extended

real-valued functions and the related generalized KKM maps:

Theorem 6. Let I be a nonempty set, (X,D; Γ) a G-convex space, f : I ×X → R, and
γ ∈ R. Then the following are equivalent:

(i) The multimap F : I ( X, defined by F (z) := {x ∈ X : f(z, x) ≤ γ} [resp.

F (z) := {x ∈ X : f(z, x) ≥ γ}] for all z ∈ I, is a generalized KKM map.

(ii) f is generalized γ-quasiconcave [resp. generalized γ-quasiconvex ] in the first variable

z.

Proof. (i) ⇒ (ii) For any N ∈ ⟨I⟩, there exists a σ : N → D such that M ∈ ⟨N⟩ implies

Γσ(M) ⊂ F (M). Let x ∈ Γσ(M). Then x ∈ F (z) for some z ∈ M and hence f(z, x) ≤ γ
9



[resp. f(z, x) ≥ γ]. Hence minz∈M f(z, x) ≤ γ [resp. maxz∈M f(z, x) ≥ γ] so that f is

generalized γ-quasiconcave [resp. generalized γ-quasiconvex] in the first variable z.

(ii) ⇒ (i) Since f is generalized γ-quasiconcave [resp. generalized γ-quasiconvex] in z,

for any N ∈ ⟨I⟩, there exists a σ : N → D such that M ∈ ⟨N⟩ implies minz∈M f(z, x) ≤ γ

[resp. maxz∈M f(z, x) ≥ γ] for all x ∈ Γσ(M). Therefore, x ∈ Γσ(M) implies f(z, x) ≤ γ

[resp. f(z, x) ≥ γ] for some z ∈ M , and hence x ∈ F (z) for some z ∈ M . Therefore

Γσ(M) ⊂
∪

z∈M F (z) = F (M) so that F is a generalized KKM map.

Examples. (1) For a convex subset X = D of a topological vector space, Theorem 6

reduces to Chang and Zhang [2, Proposition 2.1].

(2) For X = D, Theorem 6 reduces to Tan [29, Proposition 2.1].

(3) Tan’s result was obtained by Kirk–Sims–Yuan [10, Lemma 2.7] for a hyperconvex

metric space X.

Corollary 6′. Let (X,D; Γ) be a G-convex space, f : D ×X → R, and γ ∈ R. Then the

following are equivalent:

(i) The multimap F : D ( X, defined by F (z) := {x ∈ X : f(z, x) ≤ γ} [resp.

F (z) := {x ∈ X : f(z, x) ≥ γ}] for all z ∈ I, is a KKM map.

(ii) f is diagonally γ-quasiconcave [resp. diagonally γ-quasiconvex ] in the first variable

z.

Example. If X is a convex subset of a topological vector space and D ⊂ X, Corollary 6′

is first noted by Tian [30, Remark 3].

From Theorem 6, we obtain the following equilibrium result implying minimax inequal-

ities, variational inequalities, and so on:

Theorem 7. Let I be a nonempty set, (X,D; Γ) a G-convex space, f : I ×X → R, and
γ ∈ R such that

(7.1) for each z ∈ I, {x ∈ X : f(z, x) ≤ γ} is [transfer ] closed (for example, x 7→ f(z, x)

is lower semicontinuous);

(7.2) f is generalized γ-quasiconcave in the first variable z; and

(7.3) there exists a set M ∈ ⟨I⟩ such that
∩

z∈M {x ∈ X : f(z, x) ≤ γ} is compact in X.

Then there exists an x0 ∈ X such that f(z, x0) ≤ γ for all z ∈ I.

Proof. Let us define a map F : I ( X by F (z) := {x ∈ X : f(z, x) ≤ γ} for z ∈ I. Then,

by (7.1), F is [transfer] closed-valued. By Theorem 6, (7.2) implies that F is a generalized
10



KKM map. Therefore, by Theorem 4′(i), (7.3) implies
∩

z∈I F (z) ̸= ∅. Hence there exists

an x0 ∈ X such that x0 ∈ F (z) or f(z, x0) ≤ γ for all z ∈ I. This completes our proof.

Examples. (1) For closed convex subsets I and X = D of Hausdorff topological vector

spaces, Theorem 7 reduces to Chang and Zhang [2, Theorem 3.4].

(2) Tan [29, Theorem 3.1] obtained Theorem 7 for X = D under some superfluous

restrictions.

(3) Tan’s result was obtained by Kirk–Sims–Yuan [10, Theorem 2.8] for a hyperconvex

metric space X.

Final Remarks. (1) From a particular form [2, Theorem 3.4] of Theorem 7, Chang and

Zhang obtained a general variational inequality of the Browder–Hartman–Stampacchia

type, a saddle point theorem, an existence theorem of solutions for a class of quasi-

variational inequalities, and a generalization of the Fan–Glicksberg fixed point theorem.

(2) From a particular form [29, Theorem 3.1] of Theorem 7, Tan deduced the Ky

Fan type minimax inequalities [29, Theorems 3.2, 3.4, and Proposition 3.4], and several

existence results of saddle points and minimax theorems [29, Theorems 4.1, 4.2, 4.4-4.6].

Those results can also be generalized and improved by adopting our method in this paper.

(3) Most of the results in Kirk–Sims–Yuan [10] and Yuan [32] are already known for

H-spaces or G-convex spaces.
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