AN ALTERNATIVE PRINCIPLE FOR CONNECTED ORDERED SPACES

Sehie Park

Seoul National University (Seoul 151–742, Korea)

1. Introduction

In [R1], B. Ricceri considered spaces admitting a continuous bijection onto [0, 1] (simply, we will call them [0, 1]-spaces) and, based on a new alternative principle for multifunctions involving [0, 1]-spaces, obtained new mini-max theorems in full generality and transparence. Several further consequences of the principle have been investigated in successive works; see [R2, R3, Ci, CB].

In our previous work [P1], we deduced some fixed point theorems for connected [0, 1]-spaces from Ricceri's alternative principle. Even though these theorems were consequences of known theorems for an interval [a, b], in general, they seem to be quite new. More general theorems for connected ordered spaces were recently obtained in [P2] with a different method.

In the present paper, we are mainly concerned with connected topological spaces which admit continuous bijections onto a connected ordered spaces with two end points. In Section 2, we deduce a Ricceri type alternative principle and fixed point theorems. Section 3 deals with the incorrect proof of Maćkowiak [M, Theorem 3.1], which was the main tool in [C]. In Section 4, we show that our alternative principle is a generalization of Szabó's theorem [S]. Section 5 deals with the coincidence theorems of Charatonik [C]. In fact, we give new and correct proofs based on our principle and the affirmative answer to Charatonik's question.

2. A RICCERI TYPE ALTERNATIVE PRINCIPLE

A multifunction $T: X \to 2^Y$ is a function from X into the power set of Y with nonempty values, and $x \in T^{-1}(y)$ if and only if $y \in T(x)$.

For topological spaces X and Y, a multifunction $T: X \to 2^Y$ is said to be closed if its graph $Gr(T) = \{(x,y) : x \in X, y \in T(x)\}$ is closed in $X \times Y$, and compact if the closure $\overline{T(X)}$ of its range T(X) is compact in Y.

A multifunction $T: X \multimap Y$ is said to be upper semicontinuous (u.s.c) if for each closed set $B \subset Y$, the set $T^{-1}(B) = \{x \in X : T(x) \cap B \neq \emptyset\}$ is a closed subset of X; lower semicontinuous (l.s.c.) if for each open set $B \subset Y$, the set $T^{-1}(B)$ is open; and continuous if it is u.s.c. and l.s.c. Note that every u.s.c. multifunction T with closed values is closed.

We need the following [H, Theorem 3.1]:

Lemma. Let $\Gamma: X \multimap Y$ be l.s.c. (or u.s.c.). Suppose that $C \subset X$ is connected and that $\Gamma(x)$ is connected for all $x \in C$. Then the image of C under Γ is connected.

A linearly ordered set (X, \leq) is called an *ordered space* if it has the order topology whose subbase consists of all sets of the form $\{x \in X : x < s\}$ and $\{x \in X : x > s\}$ for $s \in X$. Note that an ordered space X is connected iff it is Dedekind complete (that is, every subset of X having an upper bound has a supremum) and whenever x < y in X, then x < z < y for some z in X; for details, see Willard [Wi].

We give some examples of connected ordered space X with two end points:

- (a) Connected [0, 1]-spaces; that is, connected spaces admitting a continuous bijection onto the unit interval; see [R1], [P1].
- (b) An arc is a homeomorphic image of the unit interval [0,1]. A generalized arc is a continuum (not necessarily metrizable) having exactly two non-cut points. It is well-known that a generalized arc is an arc if and only if it is metrizable. It is known [W] that cut points are used to define a natural order on a connected set, and that any generalized arc admits a natural linear order which will be denoted by \leq .

A connected ordered space with two end points a, b with a < b will be denoted by [a, b].

Motivated by Ricceri [R1], we obtain the following alternative principle:

Theorem 1. Let X be a connected topological space, and Y a topological space admitting a continuous bijection onto a connected ordered space [a,b]. Let $F,G: X \to 2^Y$ be maps satisfying one of the following two conditions:

- (i) F, G are l.s.c. with connected values;
- (ii) F, G are u.s.c. with compact connected values.

Under such assumptions, at least one of the following two assertions does hold:

- (a) $F(X) \neq Y$ and $G(X) \neq Y$.
- (b) There exists some $\tilde{x} \in X$ such that $F(\tilde{x}) \cap G(\tilde{x}) \neq \emptyset$.

Proof. Let φ be a continuous bijection from Y onto a connected ordered space [a,b]. Suppose that $F(x) \cap G(x) = \emptyset$ for all $x \in X$ and F(X) = Y. Let

$$H(x) = \varphi(F(x)) \times \varphi(G(x))$$
 for $x \in X$.

We claim that H(X) is connected.

Case (i). The multifunctions $\varphi \circ F$ and $\varphi \circ G$ are l.s.c. with connected values. It is easily checked that H is l.s.c.; see [B].

Case (ii). The multifunctions $\varphi \circ F$ and $\varphi \circ G$ are u.s.c. with compact connected values. Then H is u.s.c. with compact connected values; here, the compact-valuedness of $\varphi \circ F$ and $\varphi \circ G$ are essential in order to assure the u.s.c. of H; see [B].

Then, by Lemma, H(X) is connected in any case.

Now we show that H(X) is also disconnected: Let $A,B\subset [a,b]\times [a,b]$ such that

$$A := \{(s,t) : s < t\}$$
 and $B := \{(s,t) : s > t\}$.

Then A and B are open and disjoint, and we clearly have

$$H(X) \subset A \cup B$$
.

Choose $x_a, x_b \in X$ such that $\varphi^{-1}(a) \in F(x_a)$ and $\varphi^{-1}(b) \in F(x_b)$. Pick $y_a \in G(x_a)$ and $y_b \in G(x_b)$. Then we have $\varphi(y_a) > a$; for, otherwise, we would have $F(x_a) \cap G(x_a) \neq \emptyset$. Likewise, we have $\varphi(y_b) < b$.

Consequently,

$$(a, \varphi(y_a)) \in A \cap H(X)$$
 and $(b, \varphi(y_b)) \in B \cap H(X)$.

Then H(X) becomes the union of two disjoint nonempty open subsets $A \cap H(X)$ and $B \cap H(X)$. This contradicts the connectivity of H(X).

Remarks. 1. We followed the proof of Ricceri [R1, Theorem 2.1], which is the case of Theorem 1 for a [0,1]-space Y.

2. However, our result is already known by Ricceri, since he noted that his result [R1, Theorem 2.1] is still true if [0,1] is replaced by any topological space T having the following property: there are two open (or closed) subsets A, B of $T \times T$ and two points $s_0, t_0 \in T$ such that $(T \times T) \setminus \Delta \subset A \cup B$, $A \cap B \subset \Delta$, $\{s_0\} \times (T \setminus \{s_0\}) \subset A$, and $\{t_0\} \times (T \setminus \{t_0\}) \subset B$, where Δ is the diagonal of $T \times T$.

From Theorem 1, we have the following:

Theorem 2. Let X be a topological space, Y a topological space admitting a continuous bijection onto a connected ordered space [a,b], and S a connected subset of $X \times Y$. Moreover, let $\Phi: X \to 2^Y$ be a multifunction which is either l.s.c. with connected values, or u.s.c. with compact connected values. Then, at least one of the following holds:

- (a₁) $p_Y(S) \neq Y$ and $\Phi(p_X(S)) \neq Y$, where p_X and p_Y are projections from $X \times Y$ to X and Y, resp.
- (a₂) There exists some $(\tilde{x}, \tilde{y}) \in S$ such that $\tilde{y} \in \Phi(\tilde{x})$.

Proof. We may assume $S \neq \emptyset$. Define $F, G: S \to 2^Y$ by

$$F(x,y) = \{y\}$$
 and $G(x,y) = \Phi(x)$ for $(x,y) \in S$.

Then the conclusion follows from Theorem 1.

Remark. For a [0, 1]-space Y Theorem 2 reduces to Ricceri [R1, Theorem 2.2].

From Theorems 1 and 2, we deduce the following fixed point theorem on multifunctions:

Theorem 3. Let X be a connected ordered space with two end points. Then a multifunction $F: X \to 2^X$ has a fixed point if it satisfies one of the following conditions:

- (I) F has connected graph.
- (II) F is l.s.c. with connected values.
- (III) F is u.s.c. with compact connected values.
- (IV) F(x) is connected and $F^{-1}(y)$ is open for each $x, y \in X$.
- (V) F is a closed compact multifunction with connected values.

Proof. (I)-(V) are all simple consequences of Theorems 1 and 2 as follows:

- (I) Theorem 2 with X = Y, S = Gr(F), and $\Phi = id_X$, the identity map on X.
- (II) Theorem 1(i) with X = Y and $G = id_X$.
- (III) Theorem 1(ii) with X = Y and $G = id_X$.
- (IV) Since $F^{-1}(y)$ is open for each $y \in X$, F is l.s.c. Indeed, for each open set $\Omega \subset X$, we have

$$F^{-1}(\Omega) = \{ x \in X : F(x) \cap \Omega \neq \emptyset \} = \bigcup_{y \in \Omega} F^{-1}(y)$$

is open. Therefore, (IV) follows from (II).

(V) It is well-known that a closed compact multifunction is u.s.c. with compact values. Therefore, (V) follows from (III).

Remark. Theorem 3 was given in [P2] with different proof.

3. On a coincidence theorem of Maćkowiak

In 1981, Maćkowiak [M] introduduced componentwise continuous (c.c.) multifunctions and used them to obtain some fixed point theorems which generalize most known fixed point theorems for trees, dendroids, and λ -dendroids. Moreover, he obtained a coincidence theorem [M, Theorem 3.1] for two c.c. multifunctions from a connected Hausdorff space X into a generalized arc I.

For Hausdorff compact spaces X and Y, a multifunction $F: X \to 2^Y$ is said to be *componentwise continuous* (c.c.) [M] if $x = \lim\{x_\sigma\}$ implies that

- (a) Ls $\{C_{\alpha}\} \cap F(x) \neq \emptyset$, where C_{α} is a component of $F(x_{\sigma})$ for each σ [Ls $\{C_{\sigma}\}$ is the superior limit of the net $\{C_{\sigma}\}$]; and
- (b) every component of F(x) intersects Ls $\{F(x_{\sigma})\}$.

In [M], many examples of c.c. multifunctions were given and, among them are

- (1) lower semicontinuous (l.s.c.) multifunctions with connected values, and
- (2) upper semicontinuous (u.s.c.) multifunctions with closed connected values.

Recall that a *generalized arc* is a continuum which has exactly two non-cut points.

Theorem M. [M, Theorem 3.1] Let c.c. multifunctions F and G map a connected space X into a generalized arc I. Assume that one of the following conditions holds:

- (i) F is a surjection with connected values.
- (ii) F and G are both surjections.

Then there is an $x \in X$ such that $F(x) \cap G(x) \neq \emptyset$.

On the other hand, in an unpublished work of the present author, he tried to apply Theorem M to obtain a common generalization of Theorem M and Ricceri's alternative principle [R1]. However, an excellent referee of that work realized and informed the present author that, unfortunately, the proof of Theorem M is wrong. The referee wrote as follows:

Indeed, using the same notations as in [M], take:

$$X = I = [0, 1],$$

$$F(x) = \{x\},$$

$$G(x) = \begin{cases} \{x\} & \text{if } x \in [0, 1) \\ [0, 1] & \text{if } x = 1. \end{cases}$$

Observe that both the multifunctions F, G are upper semicontinuous, with compact and connected values. So, they are c.c. Moreover, F and G are both surjections. Hence, all the assumptions of Theorem M are satisfied. Now, consider the set A introduced in the proof. Namely,

$$A = \{x \in [0,1] : G(x) \subset [x,1]\}.$$

In the proof, it is claimed that A is closed. In the present case, this is not true. Indeed, we clearly have

$$A = [0, 1).$$

Knowing that A is closed is absolutely necessary in the approach adopted in [M]. Consequently, Theorem M, in the absence of a correct proof, should be considered as a conjecture.

4. Generalizations of Szabó's Theorem

In 1994, Szabó [S] obtained a coincidence theorem for two continuous multifunctions from a connected space into the set of closed connected subsets of [0, 1]. Further, he raised a problem how one can generalize his result, in particular for other space than [0, 1]. In 1997, the present author [P1] and Charatonik [C] gave affirmative solutions to the problem, independently. However, in [C], it was noted that [M, Theorem 3.1] is much stronger than Szabó's theorem.

Let X be a connected topological space. According to Szabó [S], let K[0,1] denote the set of closed connected subsets of [0,1], and a function $F: X \to K[0,1]$ is said to be continuous if each F(x) for $x \in X$ is $[f_0(x), f_1(x)]$ where $f_0, f_1: X \to [0,1]$ are continuous.

The following is due to Szabó [S]:

Theorem S. Let $F, G: X \to K[0,1]$ be continuous functions and assume that

$$\bigcup_{x \in X} F(x) = [0, 1].$$

Then there exists $x_0 \in X$ such that $F(x_0) \cap G(x_0) \neq \emptyset$.

Moreover, Szabó [S] raised the following:

Problem S. How can we generalize Theorem S for other spaces instead of [0,1]?

In our previous work [P1], we showed that Theorem S is still true if [0,1] is replaced by any space T in Remark 2 of Theorem 1.

More precisely, Theorem 1 generalizes Theorem S and is an affirmative solution of Problem S.

5. On coincidence theorems of Charatonik

Since any generalized arc admits a natural linear order \leq , it can be denoted by [a,b].

Given a generalized arc [a, b], Charatonik [C] denoted by K[a, b] the set of closed connected subsets of [a, b]. Thus each nondegenerate element of K[a, b] is a generalized arc [c, d] with $a \le c < d \le b$. Adopting the definition from Szabó [S] to this more general case, Charatonik [C] defined the following:

Definition C. Let a generalized arc [a,b] be fixed. A multifunction $F: X \to K[a,b]$ is said to be *continuous* provided that if $F(x) = [f_0(x), f_1(x)]$, then the function $f_0: X \to [a,b]$ and $f_1: X \to [a,b]$ are continuous.

Then Charatonik [C] obtained the following:

Statement C. Let X be a space and Y = [a, b] a generalized arc. Then a multifunction $F: X \to K[a, b] \subset 2^Y$ is continuous (u.s.c. and l.s.c.) if and only if it is continuous in the sense of Definition S.

Note that in the above argument, a generalized arc can be replaced by any connected ordered space with two end points.

Analyzing carefully assumptions of Theorem S, Charatonic [C] showed that, in the light of Statment C, the theorem can be reformulated as follows:

Theorem C. Let X and Y be topological spaces and let multifunctions $F,G: X \to 2^Y$ be given. Assume that

- (1) X is connected;
- (2) Y is a generalized arc (or more generally, a connected ordered space with two end points);
- (3) Y is metrizable;
- (4) F is l.s.c.;
- (5) F is u.s.c.;
- (6) F has compact values;
- (7) F has connected values;
- (8) F is surjective;
- (9) G is l.s.c.;
- (10) G is u.s.c.;
- (11) G has compact values;
- (12) G has connected values.

Then

(13) There exists $x_0 \in X$ such that $F(x_0) \cap G(x_0) \neq \emptyset$.

Note that we replaced the closedness in (6) and (11) by compactness.

Charatonik [C] formulated the following as a possible generalization of Theorem S (or, equivalently, of Theorem C) for Hausdorff spaces X:

Proposition C₁. If X is a Hausdorff space, then in Theorem C assumptions (3), (5), (6), (10), and (11) can be omitted.

In the proof of Proposition C_1 , the author applied Theorem M. In view of Section 3 of the present paper, the proof can not be complete.

However, without assuming Hausdorffness of X, Proposition C_1 follows immediately from Theorem 1(i).

Another modification of Theorem S is the following in [C].

Proposition C₂. If X is a Hausdorff space, then in Theorem C assumptions (3), (4), and (9) can be omitted.

This also follows from Theorem 1(ii) without assuming Hausdorffness of X. Therefore, we answered affirmatively to the following raised in [C]:

Question C. Can the assumption that the space X is Hausdorff be omitted in Propositions C_1 and C_2 ?

Note that the Hausdorffness in Propositions C_1 and C_2 came from [M, Theorem 3.1] and is not necessary because our proofs are based on Theorem 1.

REFERENCES

- [B] C. Berge, Espaces Topologique Fonctions Multivoques, Dunod, Paris, 1959. = Topological Spaces, Olyver and Boyd, Edinburgh, 1970.
- [C] J. J. Charatonik, On a fixed point theorem for multifunctions, Annales Univ. Sci. Budapest 40 (1997), 31–36.
- [Ci] A. Chinni, Some remarks on a theorem on sets with connected sections, Rend. Circolo Mat. Palermo 45 (1996), 5–8.
- [CB] P. Cubiotti and B. di Bella, A new approach to the existence of zeros for nonlinear operators, Le Matematiche 49 (1994), 205–210.
- [H] J.-B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407–422.
- [M] T. Maćkowiak, The fixed point property for set-valued mappings, Colloq. Math. 45 (1981), 227–243.
- [P1] Sehie Park, Remarks on fixed point theorems of Ricceri, Proc. '97 Workshop on Math. Anal. Appl., Pusan Nat. Univ., 1997, pp.1–9.
- [P2] _____, Fixed point theorems on connected ordered spaces, to appear.

- [R1] B. Ricceri, Some topological mini-max theorems via an alternative principle for multifunctions, Arch. Math. **60** (1993), 367–377.
- [R2] _____, On some recent topological mini-max theorems, Le Matematiche **49** (1994), 349–357.
- [R3] _____, Applications of a theorem concerning sets with connected sections, Top. Meth. in Nonlinear Analysis 5 (1995), 237–248.
- [S] V. E. S. Szabó, A fixed point theorem, Annales Univ. Sci. Budapest 37 (1994), 197–198.
- [W] G. T. Whyburn, *Analytic Topology*, Amer. Math. Soc. Colloq. Publ. **28**, Providence, 1942 (Reprinted with corrections, 1971).
- [Wi] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.