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1. Introduction

In [R1], B. Ricceri considered spaces admitting a continuous bijection onto [0, 1]

(simply, we will call them [0, 1]-spaces) and, based on a new alternative principle

for multifunctions involving [0, 1]-spaces, obtained new mini-max theorems in full

generality and transparence. Several further consequences of the principle have

been investigated in successive works; see [R2, R3, Ci, CB].

In our previous work [P1], we deduced some fixed point theorems for connected

[0, 1]-spaces from Ricceri’s alternative principle. Even though these theorems were

consequences of known theorems for an interval [a, b], in general, they seem to

be quite new. More general theorems for connected ordered spaces were recently

obtained in [P2] with a different method.

In the present paper, we are mainly concerned with connected topological spaces

which admit continuous bijections onto a connected ordered spaces with two end

points. In Section 2, we deduce a Ricceri type alternative principle and fixed point

theorems. Section 3 deals with the incorrect proof of Maćkowiak [M, Theorem 3.1],

which was the main tool in [C]. In Section 4, we show that our alternative principle

is a generalization of Szabó’s theorem [S]. Section 5 deals with the coincidence

theorems of Charatonik [C]. In fact, we give new and correct proofs based on our

principle and the affirmative answer to Charatonik’s question.
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2. A Ricceri type alternative principle

A multifunction T : X → 2Y is a function from X into the power set of Y with

nonempty values, and x ∈ T−1(y) if and only if y ∈ T (x).

For topological spaces X and Y , a multifunction T : X → 2Y is said to be

closed if its graph Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is closed in X × Y , and

compact if the closure T (X) of its range T (X) is compact in Y .

A multifunction T : X ( Y is said to be upper semicontinuous (u.s.c) if for

each closed set B ⊂ Y , the set T−1(B) = {x ∈ X : T (x)∩B ̸= ∅} is a closed subset

of X; lower semicontinuous (l.s.c.) if for each open set B ⊂ Y , the set T−1(B) is

open; and continuous if it is u.s.c. and l.s.c. Note that every u.s.c. multifunction

T with closed values is closed.

We need the following [H, Theorem 3.1]:

Lemma. Let Γ : X ( Y be l.s.c. (or u.s.c.). Suppose that C ⊂ X is con-

nected and that Γ(x) is connected for all x ∈ C. Then the image of C under Γ is

connected.

A linearly ordered set (X,≤) is called an ordered space if it has the order

topology whose subbase consists of all sets of the form {x ∈ X : x < s} and

{x ∈ X : x > s} for s ∈ X. Note that an ordered space X is connected iff it

is Dedekind complete (that is, every subset of X having an upper bound has a

supremum) and whenever x < y in X, then x < z < y for some z in X; for details,

see Willard [Wi].

We give some examples of connected ordered space X with two end points:

(a) Connected [0, 1]-spaces; that is, connected spaces admitting a continuous

bijection onto the unit interval; see [R1], [P1].

(b) An arc is a homeomorphic image of the unit interval [0, 1]. A generalized

arc is a continuum (not necessarily metrizable) having exactly two non-cut points.

It is well-known that a generalized arc is an arc if and only if it is metrizable. It is

known [W] that cut points are used to define a natural order on a connected set,

and that any generalized arc admits a natural linear order which will be denoted

by ≤.

A connected ordered space with two end points a, b with a < b will be denoted

by [a, b].

Motivated by Ricceri [R1], we obtain the following alternative principle:
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Theorem 1. Let X be a connected topological space, and Y a topological space

admitting a continuous bijection onto a connected ordered space [a, b]. Let F,G :

X → 2Y be maps satisfying one of the following two conditions:

(i) F, G are l.s.c. with connected values;

(ii) F, G are u.s.c. with compact connected values.

Under such assumptions, at least one of the following two assertions does hold:

(a) F (X) ̸= Y and G(X) ̸= Y .

(b) There exists some x̃ ∈ X such that F (x̃) ∩G(x̃) ̸= ∅.

Proof. Let φ be a continuous bijection from Y onto a connected ordered space

[a, b]. Suppose that F (x) ∩G(x) = ∅ for all x ∈ X and F (X) = Y . Let

H(x) = φ(F (x))× φ(G(x)) for x ∈ X.

We claim that H(X) is connected.

Case (i). The multifunctions φ ◦ F and φ ◦G are l.s.c. with connected values.

It is easily checked that H is l.s.c.; see [B].

Case (ii). The multifunctions φ◦F and φ◦G are u.s.c. with compact connected

values. Then H is u.s.c. with compact connected values; here, the compact-

valuedness of φ ◦ F and φ ◦G are essential in order to assure the u.s.c. of H; see

[B].

Then, by Lemma, H(X) is connected in any case.

Now we show that H(X) is also disconnected: Let A,B ⊂ [a, b] × [a, b] such

that

A := {(s, t) : s < t} and B := {(s, t) : s > t}.

Then A and B are open and disjoint, and we clearly have

H(X) ⊂ A ∪B.
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Choose xa, xb ∈ X such that φ−1(a) ∈ F (xa) and φ−1(b) ∈ F (xb). Pick ya ∈
G(xa) and yb ∈ G(xb). Then we have φ(ya) > a; for, otherwise, we would have

F (xa) ∩G(xa) ̸= ∅. Likewise, we have φ(yb) < b.

Consequently,

(a, φ(ya)) ∈ A ∩H(X) and (b, φ(yb)) ∈ B ∩H(X).

Then H(X) becomes the union of two disjoint nonempty open subsets A ∩H(X)

and B ∩H(X). This contradicts the connectivity of H(X).

Remarks. 1. We followed the proof of Ricceri [R1, Theorem 2.1], which is the case

of Theorem 1 for a [0, 1]-space Y .

2. However, our result is already known by Ricceri, since he noted that his

result [R1, Theorem 2.1] is still true if [0, 1] is replaced by any topological space

T having the following property: there are two open (or closed) subsets A,B of

T × T and two points s0, t0 ∈ T such that (T × T )\∆ ⊂ A ∪ B, A ∩ B ⊂ ∆,

{s0}× (T\{s0}) ⊂ A, and {t0}× (T\{t0}) ⊂ B, where ∆ is the diagonal of T ×T .

From Theorem 1, we have the following:

Theorem 2. Let X be a topological space, Y a topological space admitting a

continuous bijection onto a connected ordered space [a, b], and S a connected subset

of X × Y . Moreover, let Φ : X → 2Y be a multifunction which is either l.s.c. with

connected values, or u.s.c. with compact connected values. Then, at least one of

the following holds:

(a1) pY (S) ̸= Y and Φ(pX(S)) ̸= Y , where pX and pY are projections from

X × Y to X and Y , resp.

(a2) There exists some (x̃, ỹ) ∈ S such that ỹ ∈ Φ(x̃).

Proof. We may assume S ̸= ∅. Define F,G : S → 2Y by

F (x, y) = {y} and G(x, y) = Φ(x) for (x, y) ∈ S.

Then the conclusion follows from Theorem 1.

Remark. For a [0, 1]-space Y Theorem 2 reduces to Ricceri [R1, Theorem 2.2].

From Theorems 1 and 2, we deduce the following fixed point theorem on mul-

tifunctions:
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Theorem 3. Let X be a connected ordered space with two end points. Then a

multifunction F : X → 2X has a fixed point if it satisfies one of the following

conditions:

(I) F has connected graph.

(II) F is l.s.c. with connected values.

(III) F is u.s.c. with compact connected values.

(IV) F (x) is connected and F−1(y) is open for each x, y ∈ X.

(V) F is a closed compact multifunction with connected values.

Proof. (I)-(V) are all simple consequences of Theorems 1 and 2 as follows:

(I) Theorem 2 with X = Y, S = Gr(F ), and Φ = idX , the identity map on X.

(II) Theorem 1(i) with X = Y and G = idX .

(III) Theorem 1(ii) with X = Y and G = idX .

(IV) Since F−1(y) is open for each y ∈ X, F is l.s.c. Indeed, for each open set

Ω ⊂ X, we have

F−1(Ω) = {x ∈ X : F (x) ∩ Ω ̸= ∅} =
∪
y∈Ω

F−1(y)

is open. Therefore, (IV) follows from (II).

(V) It is well-known that a closed compact multifunction is u.s.c. with compact

values. Therefore, (V) follows from (III).

Remark. Theorem 3 was given in [P2] with different proof.
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3. On a coincidence theorem of Maćkowiak

In 1981, Maćkowiak [M] introduduced componentwise continuous (c.c.) mul-

tifunctions and used them to obtain some fixed point theorems which generalize

most known fixed point theorems for trees, dendroids, and λ-dendroids. Moreover,

he obtained a coincidence theorem [M, Theorem 3.1] for two c.c. multifunctions

from a connected Hausdorff space X into a generalized arc I.

For Hausdorff compact spaces X and Y , a multifunction F : X → 2Y is said to

be componentwise continuous (c.c.) [M] if x = lim{xσ} implies that

(a) Ls{Cα}∩F (x) ̸= ∅, where Cα is a component of F (xσ) for each σ [Ls{Cσ}
is the superior limit of the net {Cσ}]; and

(b) every component of F (x) intersects Ls{F (xσ)}.

In [M], many examples of c.c. multifunctions were given and, among them are

(1) lower semicontinuous (l.s.c.) multifunctions with connected values, and

(2) upper semicontinuous (u.s.c.) multifunctions with closed connected values.

Recall that a generalized arc is a continuum which has exactly two non-cut

points.

Theorem M. [M, Theorem 3.1] Let c.c. multifunctions F and G map a connected

space X into a generalized arc I. Assume that one of the following conditions holds:

(i) F is a surjection with connected values.

(ii) F and G are both surjections.

Then there is an x ∈ X such that F (x) ∩G(x) ̸= ∅.

On the other hand, in an unpublished work of the present author, he tried to

apply Theorem M to obtain a common generalization of Theorem M and Ricceri’s

alternative principle [R1]. However, an excellent referee of that work realized and

informed the present author that, unfortunately, the proof of Theorem M is wrong.

The referee wrote as follows:
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Indeed, using the same notations as in [M], take:

X = I = [0, 1],

F (x) = {x},

G(x) =

{ {x} if x ∈ [0, 1)

[0, 1] if x = 1.

Observe that both the multifunctions F,G are upper semicontinuous, with compact

and connected values. So, they are c.c. Moreover, F and G are both surjections.

Hence, all the assumptions of Theorem M are satisfied. Now, consider the set A

introduced in the proof. Namely,

A = {x ∈ [0, 1] : G(x) ⊂ [x, 1]}.

In the proof, it is claimed that A is closed. In the present case, this is not true.

Indeed, we clearly have

A = [0, 1).

Knowing that A is closed is absolutely necessary in the approach adopted in [M].

Consequently, Theorem M, in the absence of a correct proof, should be considered

as a conjecture.

4. Generalizations of Szabó’s theorem

In 1994, Szabó [S] obtained a coincidence theorem for two continuous multi-

functions from a connected space into the set of closed connected subsets of [0, 1].

Further, he raised a problem how one can generalize his result, in particular for

other space than [0, 1]. In 1997, the present author [P1] and Charatonik [C] gave

affirmative solutions to the problem, independently. However, in [C], it was noted

that [M, Theorem 3.1] is much stronger than Szabó’s theorem.

Let X be a connected topological space. According to Szabó [S], let K[0, 1]

denote the set of closed connected subsets of [0, 1], and a function F : X → K[0, 1]

is said to be continuous if each F (x) for x ∈ X is [f0(x), f1(x)] where f0, f1 : X →
[0, 1] are continuous.

The following is due to Szabó [S]:
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Theorem S. Let F,G : X → K[0, 1] be continuous functions and assume that

∪
x∈X

F (x) = [0, 1].

Then there exists x0 ∈ X such that F (x0) ∩G(x0) ̸= ∅.

Moreover, Szabó [S] raised the following:

Problem S. How can we generalize Theorem S for other spaces instead of [0, 1]?

In our previous work [P1], we showed that Theorem S is still true if [0, 1] is

replaced by any space T in Remark 2 of Theorem 1.

More precisely, Theorem 1 generalizes Theorem S and is an affirmative solution

of Problem S.

5. On coincidence theorems of Charatonik

Since any generalized arc admits a natural linear order ≤, it can be denoted by

[a, b].

Given a generalized arc [a, b], Charatonik [C] denoted by K[a, b] the set of

closed connected subsets of [a, b]. Thus each nondegenerate element of K[a, b] is a

generalized arc [c, d] with a ≤ c < d ≤ b. Adopting the definition from Szabó [S]

to this more general case, Charatonik [C] defined the following:

Definition C. Let a generalized arc [a, b] be fixed. A multifunction F : X →

K[a, b] is said to be continuous provided that if F (x) = [f0(x), f1(x)], then the

function f0 : X → [a, b] and f1 : X → [a, b] are continuous.

Then Charatonik [C] obtained the following:
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Statement C. Let X be a space and Y = [a, b] a generalized arc. Then a

multifunction F : X → K[a, b] ⊂ 2Y is continuous (u.s.c. and l.s.c.) if and only if

it is continuous in the sense of Definition S.

Note that in the above argument, a generalized arc can be replaced by any

connected ordered space with two end points.

Analyzing carefully assumptions of Theorem S, Charatonic [C] showed that, in

the light of Statment C, the theorem can be reformulated as follows:

Theorem C. Let X and Y be topological spaces and let multifunctions F,G :

X → 2Y be given. Assume that

(1) X is connected;

(2) Y is a generalized arc (or more generally, a connected ordered space with

two end points);

(3) Y is metrizable;

(4) F is l.s.c.;

(5) F is u.s.c.;

(6) F has compact values;

(7) F has connected values;

(8) F is surjective;

(9) G is l.s.c.;

(10) G is u.s.c.;

(11) G has compact values;

(12) G has connected values.

Then

(13) There exists x0 ∈ X such that F (x0) ∩G(x0) ̸= ∅.

Note that we replaced the closedness in (6) and (11) by compactness.

Charatonik [C] formulated the following as a possible generalization of Theorem

S (or, equivalently, of Theorem C) for Hausdorff spaces X:
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Proposition C1. If X is a Hausdorff space, then in Theorem C assumptions (3),

(5), (6), (10), and (11) can be omitted.

In the proof of Proposition C1, the author applied Theorem M. In view of

Section 3 of the present paper, the proof can not be complete.

However, without assuming Hausdorffness of X, Proposition C1 follows imme-

diately from Theorem 1(i).

Another modification of Theorem S is the following in [C].

Proposition C2. If X is a Hausdorff space, then in Theorem C assumptions (3),

(4), and (9) can be omitted.

This also follows from Theorem 1(ii) without assuming Hausdorffness of X.

Therefore, we answered affirmatively to the following raised in [C]:

Question C. Can the assumption that the space X is Hausdorff be omitted in

Propositions C1 and C2?

Note that the Hausdorffness in Propositions C1 and C2 came from [M, Theorem

3.1] and is not necessary because our proofs are based on Theorem 1.
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