Bull. Korean Math. Soc. 37 (2000), No. 1, pp. 11-19

COINCIDENCE AND SADDLE POINT THEOREMS ON GENERALIZED CONVEX SPACES

SEHIE PARK AND IN-SOOK KIM

ABSTRACT. We give a new coincidence theorem for multimaps on generalized convex spaces and apply it to deduce ε -saddle point and saddle point theorems.

1. Introduction and Preliminaries

In [8], some ε -saddle point and saddle point theorems for convex sets in topological vector spaces were obtained. These new results generalize the corresponding ones of Komiya [2].

Now it is well-known that convex subsets of topological vector spaces are generalized to convex spaces due to Lassonde [3], which are further extended to the generalized convex spaces or G-convex spaces due to Park [4,5,6,7]. This new class of spaces contains many known spaces having certain abstract convexity without linear structure; see [5].

In the present paper, we deduce a new coincidence theorem for multimaps on G-convex spaces, and use it to deduce new ε -saddle point and saddle point theorems. Consequently, we show that main results in [8] holds for much larger class of spaces.

A multimap $T: X \multimap Y$ is a function from X into the power set 2^Y of Y with fibers $T^-y := \{x \in X : y \in Tx\}$ for $y \in Y$. A function $f: X \to \mathbb{R}$ on a topological space X is said to be *lower* (resp. *upper*) semicontinuous if the set $\{x \in X : f(x) > \alpha\}$ (resp. $\{x \in X : f(x) < \alpha\}$) is open in X for every real number α .

Received June 30, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 54H25, 49J35, 54C60.

Key words and phrases: G-convex space, ε -saddle point, saddle point, coincidence theorem, transfer upper (lower) semicontinuous function, multimap.

The first author is supported by S.N.U. Research Fund, 1999.

Given a set A, let $\langle A \rangle$ denote the collection of all nonempty finite subsets of A and |A| the cardinality of A. Let Δ_n be the standard *n*-simplex.

A generalized convex space or a G-convex space $(X, D; \Gamma)$ consists of a topological space X and a nonempty set D such that for each $A \in \langle D \rangle$ with |A| = n + 1, there exist a subset $\Gamma(A)$ of X and a continuous function $\phi_A : \Delta_n \to \Gamma(A)$ such that $\phi_A(\Delta_J) \subset \Gamma(J)$ for every $J \in \langle A \rangle$, where Δ_J denotes the face of Δ_n corresponding to $J \in \langle A \rangle$; that is, if $\Delta_n = \operatorname{co}\{e_0, e_1, \cdots, e_n\}$, $A = \{a_0, a_1, \cdots, a_n\}$, and $J = \{a_{i_0}, a_{i_1}, \cdots, a_{i_k}\} \subset A$, then $\Delta_J = \operatorname{co}\{e_{i_0}, e_{i_1}, \cdots, e_{i_k}\}$.

Examples of G-convex spaces [6] are convex spaces [3], C-spaces [1], and many others; see [5]. Given a G-convex space $(X, D; \Gamma)$ with $D \subset X$, a subset K of X is said to be Γ -convex if for each $A \in \langle D \rangle$, $A \subset K$ implies $\Gamma(A) \subset K$. For a nonempty subset K of X we define the Γ -convex hull of K

 Γ -co $K := \bigcap \{ B \subset X : B \text{ is } \Gamma$ -convex and $K \subset B \}.$

Then the Γ -convex hull of K is the smallest Γ -convex set containing K.

If D = X, then $(X, D; \Gamma)$ will be denoted by (X, Γ) . Let $Int_K A$ denote the interior of A in K.

Given $\varepsilon > 0$, a function $f: X \times Y \to \mathbb{R}$ has an ε -saddle point $(x_{\varepsilon}^*, y_{\varepsilon}^*)$ if

$$f(x,y_{\varepsilon}^{*}) - \varepsilon < f(x_{\varepsilon}^{*},y_{\varepsilon}^{*}) < f(x_{\varepsilon}^{*},y) + \varepsilon$$

for all $x \in X$ and $y \in Y$; and a point (x^*, y^*) is a saddle point of f if

$$f(x,y^*) \leq f(x^*,y^*) \leq f(x^*,y)$$

for all $x \in X$ and $y \in Y$; see [8].

Let X and Y be topological spaces, K a subset of X and L a subset of Y. A function $f: X \times Y \to \mathbb{R}$ is said to be α -transfer lower (resp. upper) semicontinuous on K relative to L if for each $(x, y) \in K \times L$, $f(x, y) > \alpha$ (resp. $f(x, y) < \alpha$) implies that there exists an open neighborhood N(x) of x in K and a point $y' \in L$ such that $f(z, y') > \alpha$ (resp. $f(z, y') < \alpha$) for all $z \in N(x)$; and transfer lower (resp. upper) semicontinuous on K relative to L if f is α -transfer lower (resp.

upper) semicontinuous on K relative to L for each $\alpha \in \mathbb{R}$; see Tian [9]. These concepts are proper generalizations of lower (resp. upper) semicontinuous real-valued functions.

2. The Coincidence Theorem

We begin with the following lemmas due to the first author [4].

LEMMA 1. Let X be a Hausdorff compact space and $(Y, D; \Gamma)$ a Gconvex space. Let $T: X \multimap Y$ and $S: X \multimap D$ be multimaps such that the following conditions are satisfied:

- (1) for each $x \in X$, $A \in \langle Sx \rangle$ implies $\Gamma(A) \subset Tx$; and
- (2) $X := \bigcup \{ \operatorname{Int}_X S^- y : y \in D \}.$

Then T has a continuous selection $f : X \to Y$ such that $f = g \circ h$, where $g : \Delta_n \to Y$ and $h : X \to \Delta_n$ are continuous functions.

LEMMA 2. Let (X, Γ) be a Hausdorff compact G-convex space and $T: X \multimap X$ a multimap such that Tx is a Γ -convex set for each $x \in X$, and $X = \bigcup \{ \operatorname{Int}_X T^- y : y \in X \}$. Then T has a fixed point.

The following theorem improves and extends a result in [10, Theorem 1] to the case of a G-convex space.

THEOREM 1. Let X be a Hausdorff topological space, $(Y, D; \Gamma_Y)$ a G-convex space, M and P subsets of $X \times Y$. Suppose that there exist a compact G-convex space (K, Γ_K) with $K \subset X$ and a subset N of $K \times D$ such that

- (1) for each $x \in K$, Γ -co $\{y \in D : (x,y) \notin N\} \subset \{y \in Y : (x,y) \notin M\};$
- (2) for each $x \in K$ with $\{y \in D : (x, y) \notin N\} \neq \emptyset$, there exists $y' \in D$ such that $x \in \text{Int}_K \{x' \in K : (x', y') \notin N\}$;
- (3) for each $y \in Y$, $\{x \in K : (x, y) \in P\}$ is a Γ -convex subset of (K, Γ_K) ;
- (4) $Y = \bigcup \{ \operatorname{Int}_Y \{ y \in Y : (x, y) \in P \} : x \in K \}; \text{ and }$
- (5) for all $(x,y) \in K \times Y$, $(x,y) \in P$ implies $(x,y) \in M$.

Then there exists a point $x_0 \in K$ such that $\{x_0\} \times D \subset N$.

Proof. Suppose that the conclusion does not hold; that is, for each $x \in K$ there is a point $y_0 \in D$ such that $(x, y_0) \notin N$. For each $x \in K$, let

$$Sx = \{y \in D : (x, y) \notin N\}, \qquad Tx = \{y \in Y : (x, y) \notin M\}.$$

Then for each $x \in K$, Γ -co $Sx \subset Tx$ by (1); $K = \bigcup \{ \operatorname{Int}_K S^- y : y \in D \}$ by (2). Define a multimap $\tilde{S} : K \multimap Y$ by $\tilde{S}x := \Gamma$ -co Sx for $x \in K$. Since $K = \bigcup \{ \operatorname{Int}_K \tilde{S}^- y : y \in Y \}$, by Lemma 1, there is a continuous function $f : K \to Y$ such that $f(x) \in \tilde{S}x \subset Tx$ for all $x \in K$. Hence, $(x, f(x)) \notin M$ for all $x \in K$.

On the other hand, we define a multimap $H: Y \multimap K$ by

$$Hy := \{x \in K : (x, y) \in P\} \quad \text{for } y \in Y.$$

By (3), Hy is Γ -convex for every $y \in Y$, and $Y = \bigcup \{ \operatorname{Int}_Y H^- x : x \in K \}$ by (4). A multimap $F : K \multimap K$ defined by $Fx := H \circ f(x)$ for $x \in K$ has Γ -convex values and $K = \bigcup \{ \operatorname{Int}_K F^- y : y \in K \}$. In fact, for every $x \in K$, there is a $y \in K$ such that $f(x) \in \operatorname{Int}_Y H^- y$ and so $x \in f^-(\operatorname{Int}_Y H^- y) \subset \operatorname{Int}_K f^-(H^- y) = \operatorname{Int}_K F^- y$ by the continuity of f. Since (K, Γ_K) is a Hausdorff compact G-convex space, by Lemma 2, there is a point $x_0 \in K$ such that $x_0 \in Fx_0 = H(f(x_0))$; and hence by (5), $(x_0, f(x_0)) \in M$. This contradiction proves the theorem. \Box

Note that, if X and Y are C-spaces, Theorem 1 reduces to [10, Theorem 1].

Now we give a Fan-Browder type coincidence theorem for G-convex spaces which generalizes [1, Corollary 4.2] and [10, Theorem 5] for C-spaces.

THEOREM 2. Let X be a Hausdorff topological space, $(Y, D; \Gamma_Y)$ a G-convex space, and $T: X \multimap Y$ and $S: Y \multimap X$ multimaps. Suppose that there exist a compact G-convex space (K, Γ_K) with $K \subset X$ and a multimap $A: K \multimap D$ such that

- (1) for each $x \in K$, $Ax \subset Tx$, and Tx is Γ -convex;
- (2) $K = \bigcup \{ \operatorname{Int}_K A^- y : y \in D \};$
- (3) for each $y \in Y$, $Sy \cap K$ is Γ -convex in (K, Γ_K) ; and
- (4) $Y = \bigcup \{ \operatorname{Int}_Y S^- x : x \in K \}.$

Then there exist points $x_0 \in K$ and $y_0 \in Y$ such that $y_0 \in Tx_0$ and $x_0 \in Sy_0$.

Proof. Let

$$P = igcup_{x \in X} \{x\} imes S^- x, \quad M = \{(x,y) \in X imes Y : y
ot\in Tx\} ext{ and } N = \{(x,y) \in K imes D : y
ot\in Ax\}.$$

Suppose that $Tx \cap S^-x = \emptyset$ for all $x \in K$. Then for all $(x, y) \in K \times Y$, $(x, y) \in P$ implies $(x, y) \in M$. Since $\{y \in D : (x, y) \notin N\} \subset \{y \in Y : y \in Tx\} = \{y \in Y : (x, y) \notin M\}$, and Tx is Γ -convex for each $x \in K$, condition (1) of Theorem 1 is satisfied. By (2) it is clear that condition (2) of Theorem 1 holds.

For each $y \in Y$, since $\{x \in K : (x, y) \in P\} = Sy \cap K$, by assumption (3), condition (3) of Theorem 1 is also satisfied. By (4), $Y = \bigcup \{ \operatorname{Int}_Y \{y \in Y : (x, y) \in P\} : x \in K \}$, that is, condition (4) of Theorem 1 holds. By Theorem 1, there exists a point $x_0 \in K$ such that $\{x_0\} \times D \subset N$; that is, $y \notin Ax_0$ for all $y \in D$. Consequently, we have $Ax_0 = \emptyset$, which contradicts assumption (2) (since $y_0 \in Ax_0$ for some $y_0 \in D$). This completes the proof.

Note that, even if X and Y are C-spaces, Theorem 2 improves [10, Theorem 5].

3. Main Results

Using our coincidence theorem, we obtain a new ε -saddle point theorem for *G*-convex spaces which generalizes [8, Theorem 1] for topological vector spaces.

THEOREM 3. Let X be a Hausdorff topological space, (Y, Γ_Y) a Gconvex space, $f: X \times Y \to \mathbb{R}$ a real-valued function and $\varepsilon > 0$. Suppose that there exists a compact G-convex space (K, Γ_K) with $K \subset X$ such that

(1) for any $(x, y) \in X \times Y$, $\inf_{v \in Y} f(x, v) > -\infty$ and $\sup_{u \in X} f(u, y) < +\infty$;

- (2) the function (x, y) → f(x, y) inf_{v∈Y} f(x, v) is ε-transfer upper semicontinuous on K relative to Y, and the set {x ∈ K : f(x, y) > t} is a nonempty Γ-convex set for each y ∈ Y and each t ∈ ℝ;
- (3) the function (x, y) → f(x, y) sup_{u∈X} f(u, y) is (-ε)-transfer lower semicontinuous on Y relative to K, and {y ∈ Y : f(x, y) < t} is a nonempty Γ-convex set for each x ∈ K and each t ∈ ℝ.

Then f has a point $(x_{\varepsilon}^*, y_{\varepsilon}^*) \in K \times Y$ such that $f(x, y_{\varepsilon}^*) - \varepsilon < f(x_{\varepsilon}^*, y_{\varepsilon}^*) < f(x_{\varepsilon}^*, y) + \varepsilon$ for all $x \in X$ and $y \in Y$.

Proof. Let $\varepsilon > 0$. Define multimaps $A : K \multimap Y$, $T : X \multimap Y$ and $S : Y \multimap X$ by

$$\begin{split} Ax &= \{y \in Y : f(x,y) - \inf_{v \in Y} f(x,v) < \varepsilon\}\\ Tx &= \{y \in Y : f(x,y) - \inf_{v \in Y} f(x,v) < \varepsilon\}\\ Sy &= \{x \in X : f(x,y) - \sup_{u \in X} f(u,y) > -\varepsilon\}. \end{split}$$

Then for each $x \in K$, Ax = Tx, and Tx is a nonempty Γ -convex set. For each $x \in K$, there exists a $y \in Y$ such that $f(x, y) - \inf_{v \in Y} f(x, v) < \varepsilon$. By (2), there exists an open neighborhood N(x) of x in K and a point $y' \in Y$ such that $f(z, y') - \inf_{v \in Y} f(z, v) < \varepsilon$ for all $z \in N(x)$, that is, $N(x) \subset A^-y'$; and hence $x \in \operatorname{Int}_K A^-y'$. Thus $K = \bigcup \{\operatorname{Int}_K A^-y : y \in Y\}$. Moreover, $Sy \cap K$ is a nonempty Γ -convex set for each $y \in Y$ by (2). A similar argument shows by (3) that $Y = \bigcup \{\operatorname{Int}_Y S^-x : x \in K\}$. By Theorem 2, there exists $(x^*, y^*) \in K \times Y$ such that $y^* \in Tx^*$ and $x^* \in Sy^*$; that is, $f(x, y^*) - \varepsilon < f(x^*, y^*) < f(x^*, y) + \varepsilon$ for all $x \in X$ and $y \in Y$. This completes the proof. \Box

For the case when X and Y are convex spaces in the sense of Lassonde [3] and for mere upper (resp. lower) semicontinuous functions, Theorem 3 improves [8, Theorem 1].

From Theorem 3 we deduce the following new saddle point theorem for spaces without linear structure.

THEOREM 4. Let X be a Hausdorff topological space, (Y, Γ_Y) a Hausdorff G-convex space and $f: X \times Y \to \mathbb{R}$ a real-valued function.

Suppose that there exists a compact G-convex space (K, Γ_K) with $K \subset X$ such that

- (1) for any $(x, y) \in X \times Y$, $\inf_{v \in Y} f(x, v) > -\infty$ and $\sup_{u \in X} f(u, y) < +\infty$;
- (2) the function (x, y) → f(x, y) inf_{v∈Y} f(x, v) is transfer upper semicontinuous on K relative to Y, the function x → f(x, y) is upper semicontinuous on K for each y ∈ Y; and the set {x ∈ K : f(x, y) > t} is a nonempty Γ-convex set for each y ∈ Y and t ∈ ℝ;
- (3) the function $(x, y) \mapsto f(x, y) \sup_{u \in X} f(u, y)$ is transfer lower semicontinuous on Y relative to K, and $\{y \in Y : f(x, y) < t\}$ is a nonempty Γ -convex set for each $x \in K$ and each $t \in \mathbb{R}$;
- (4) for every sequence $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ in $K \times Y$ such that (x_n, y_n) is an ε_n -saddle point of f and $\varepsilon_n \to 0^+$, there exist a subsequence $\{y_{n_k}\}_{k \in \mathbb{N}}$ and a point $y^* \in Y$ such that

$$\liminf_{k \to \infty} f(x,y_{n_k}) \geq f(x,y^*) \quad \text{for all } x \in X.$$

Then f has a point $(x^*, y^*) \in K \times Y$ such that $f(x, y^*) \leq f(x^*, y^*) \leq f(x^*, y)$ for all $x \in X$ and $y \in Y$.

Proof. For each $n \in \mathbb{N}$ with $\varepsilon_n \to 0^+$, by Theorem 3, there is a point $(x_n^*, y_n^*) \in K \times Y$ such that

$$f(x,y_n^*) - \varepsilon_n < f(x_n^*,y_n^*) < f(x_n^*,y) + \varepsilon_n \quad ext{for all } (x,y) \in X imes Y.$$

By (4), there exist a subsequence $\{y_{n_k}^*\}_{k\in\mathbb{N}}$ and a point $y^*\in Y$ such that

$$\liminf_{k o \infty} f(x,y^*_{n_k}) \geq f(x,y^*) \quad ext{for each } x \in X.$$

Since K is compact, there is a subnet $\{x_{\alpha}^*\}$ of $\{x_{n_k}^*\}$ and $x^* \in K$ such that $\{x_{\alpha}^*\}$ converges to x^* .

For each $x \in X$ and each α , we have

$$egin{aligned} f(x^*,y^*) &= f(x^*,y^*) - f(x^*_lpha,y^*) + f(x^*_lpha,y^*) \ &> f(x^*,y^*) - f(x^*_lpha,y^*) + f(x,y^*_lpha) - 2arepsilon_lpha \end{aligned}$$

and hence by the uppersemicontinuity of $f(\cdot, y^*)$ on K

$$egin{aligned} f(x^*,y^*) &\geq f(x^*,y^*) - \limsup_lpha f(x^*_lpha,y^*) + \liminf_lpha f(x,y^*_lpha) \ &\geq f(x,y^*). \end{aligned}$$

Next, for each $y \in Y$ and each α , we have

$$egin{aligned} f(x^*,y^*) &= f(x^*,y^*) - f(x^*,y^*_lpha) + f(x^*,y^*_lpha) \ &< f(x^*,y^*) - f(x^*,y^*_lpha) + f(x^*_lpha,y) + 2arepsilon_lpha \end{aligned}$$

and hence by the uppersemicontinuity of $f(\cdot, y)$ on K

$$egin{aligned} f(x^*,y^*) &\leq f(x^*,y^*) - \liminf_lpha f(x^*,y^*_lpha) + \limsup_lpha f(x^*_lpha,y) \ &\leq f(x^*,y). \end{aligned}$$

Thus, $(x^*, y^*) \in K \times Y$ is a saddle point of f. This completes the proof.

Note that Theorem 4 is a far-reaching generalization of [8, Theorem 2] and [2, Theorem 3].

Similarly, many other results for convex spaces or C-spaces can be extended to the framework of G-convex spaces. In the first author's works on G-convex spaces, he tried to restrict to write down only essential things.

References

- C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.
- H. Komiya, Coincidence theorem and saddle point theorem, Proc. Amer. Math. Soc. 96 (1986), 599-602.
- [3] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201.
- S. Park, Five episodes related to generalized convex spaces, Nonlinear Funct. Anal. Appl. 2 (1997), 49-61.
- [5] _____, New subclasses of generalized convex spaces, Proc. Intern. Conf. Math. Anal. Appl. (Chinju, Korea, Aug. 4-5, 1998) 1-A (1999), 65-72.

- [6] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996), 173-187.
- [7] _____, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. **209** (1997), 551-571.
- [8] K.-K. Tan, J. Yu and X.-Z. Yuan, Note on ε -saddle point and saddle point theorems, Acta Math. Hungar. 65 (1994), 395-401.
- [9] G. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium and complementarity, J. Math. Anal. Appl. 170 (1992), 457-471.
- [10] X. Wu and Y. Xu, Section theorems of Ky Fan type in H-spaces with applications, Bull. Polish Acad. Sci. Math. 45 (1997), 211-220.

SEHIE PARK, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA *E-mail*: shpark@math.snu.ac.kr

IN-SOOK KIM, DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA *E-mail*: iskim@math.skku.ac.kr