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COINCIDENCE AND SADDLE POINT THEOREMS
ON GENERALIZED CONVEX SPACES

SEHIE PARK AND IN-Sook KiMm

ABSTRACT. We give a new coincidence theorem for multimaps on
generalized convex spaces and apply it to deduce ¢-saddle point and
saddle point theorems.

1. Introduction and Preliminaries

In [8], some e-saddle point and saddle point theorems for convex sets
in topological vector spaces were obtained. These new results generalize
the corresponding ones of Komiya [2].

Now it is well-known that convex subsets of topological vector spaces
are generalized to convex spaces due to Lassonde [3], which are further
extended to the generalized convex spaces or G-convex spaces due to
Park [4,5,6,7]. This new class of spaces contains many known spaces
having certain abstract convexity without linear structure; see [5).

In the present paper, we deduce a new coincidence theorem for mul-
timaps on G-convex spaces, and use it to deduce new g-saddle point
and saddle point theorems. Consequently, we show that main results
in [8] holds for much larger class of spaces.

A multimap T : X — Y is a function from X into the power set
2Y of Y with fibers T"y:={z € X : y € Tz} for y € Y. A function
f: X — R on a topological space X is said to be lower (resp. upper)
semicontinuous if the set {x € X : f(z) > a} (resp. {z € X : f(z) <
a}) is open in X for every real number c.
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Given a set A, let {A) denote the collection of all nonempty finite
subsets of A and |A| the cardinality of A. Let A, be the standard
n-simplex.

A generalized convez space or a G-convex space (X, D;T") counsists
of a topological space X and a nonempty set D such that for each
A € (D) with |A] = n + 1, there exist a subset I'(4) of X and a
continuous function ¢4 : A, — I'(A) such that ¢4(As) C I'(J) for
every J € (A), where A; denotes the face of A, corresponding to
J € (A); that is, if A, = co{ep,€1, - ,€n}, A = {ao,a1,--- ,a,}, and
J ={aiy,ai,, - a5} C A, then Ay = co{e;y,€ip, - ;€5 }-

Examples of G-convex spaces [6] are convex spaces [3|, C-spaces [1],
and many others; see [5]. Given a G-convex space (X, D;T") with D C
X, a subset K of X is said to be I'-convez if for each A € (D), ACK
implies I'(A) C K. For a nonempty subset K of X we define the
I'-convex hull of K

I'co K:=({BC X :B isI'-convex and K C B}.

Then the I'-convex hull of K is the smallest I'-convex set containing K.

If D = X, then (X, D;I) will be denoted by (X,T'). Let IntxA
denote the interior of A in K.

Given € > 0, a function f : X XY — R has an e-saddle point (zZ,y2)
if

f(@,02) —e < fzf,02) < fat,y) +¢

for all z € X and y € Y; and a point (z*,y*) is a saddle point of f if

fx,y") < f(z*,9") < f(=",v)

for all z € X and y € Y; see [8].

Let X and Y be topological spaces, K a subset of X and L a subset
of Y. A function f: X xY — R is said to be a-transfer lower (resp.
upper) semicontinuous on K relative to L if for each (z,y) € K x L,
f(z,y) > o (resp. f(z,y) < «) implies that there exists an open
neighborhood N(z) of  in K and a point ¥ € L such that f(z,y) >
a (resp. f(2,¥') < @) for all z € N(z); and transfer lower (resp.
upper) semicontinuous on K relative to L if f is a-transfer lower (resp.
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upper) semicontinuous on K relative to L for each a € R; see Tian
[9]. These concepts are proper generalizations of lower (resp. upper)
semicontinuous real-valued functions.

2. The Coincidence Theorem
- We begin with the following lemmas due to the first author [4].

LEMMA 1. Let X be a Hausdorff compact space and (Y,D;T") a G-
convex space. Let T : X —o Y and S : X —o D be multimaps such that
the following conditions are satisfied:

(1) for each x € X, A € (Sz) implies I'(A) C Tz; and

(2) X =U{Intx S~y :y € D}.
Then T has a continuous selection f : X — Y such that f = go h,
where g : A, —» Y and h: X — A, are continuous functions.

LEMMA 2. Let (X,T") be a Hausdorff compact G-convex space and
T : X — X a multimap such that Tz is a I'-convex set for each x € X,
and X =J{Intx T"y:y € X}. Then T has a fixed point.

The following theorem improves and extends a result in (10, Theorem
1] to the case of a G-convex space.

THEOREM 1. Let X be a Hausdorff topological space, (Y,D;Ty) a
G-convex space, M and P subsets of X x Y. Suppose that there exist
a compact G-convex space (K,T'x) with K C X and a subset N of
K x D such that

(1) foreachz e K,Tco{ye D: (z,y) €N} C{yeY : (z,y) &
M};

(2) for each x € K with {y € D : (z,y) € N} # 0, there exists
y' € D such that x € Intg{z' € K : (2’,y') € N};

(3) foreachy €Y, {z € K : (z,y) € P} is a I'-convex subset of

(4) Y=U{Inty {ye Y :(z,y) € P} :z € K}, and

(5) for all (z,y) € K xY, (z,y) € P implies (z,y) € M.

Then there exists a point xo € K such that {zo} x D C N.

13



Sehie Park and In-Sook Kim

. Proof. Suppose that the conclusion does not hold; that is, for each
z € K there is a point yg € D such that (z,y0) € N. For each =z € K,
let

Sc={yeD:(z,y)¢N}, Tz={yeY:(zy)¢ M}

Then for each z € K, I'-co Sz C Tz by (1); K =|J{Intx S~y :y € D}
by (2). Define a multimap S5 :K —oY by Sz :=T-co Sz for z € K.
Since K = | J{Intg Sy:ye Y}, by Lemma 1, there is a continuous
function f : K — Y such that f(z) € Sz c Txforall z € K. Hence,
(z, f(z)) € M for all z € K.

On the other hand, we define a multimap H : Y — K by
Hy={zeK:(z,y)e P} foryeY.

By (3), HyisI'-convex foreveryy € Y,andY = J{Inty H z:z € K}
by (4). A multimap F : K —o K defined by Fz:= Ho f(z) forz € K
has I'-convex values and K = |J{Intx F~y : y € K}. In fact, for
every z € K, there is'a y € K such that f(z) € Inty H~y and so
z € f~(Inty H y) C Intg f~(H y) = Intgxr F~y by the continuity of
f. Since (K,T'k) is a Hausdorff compact G-convex space, by Lemma
2, there is a point zg € K such that zy € Fzo = H(f(z0)); and hence
by (5), (o, f(xo)) € M. This contradiction proves the theorem. O

Note that, if X and Y are C-spaces, Theorem 1 reduces to [10,
Theorem 1]. o

Now we give a Fan-Browder type coincidence theorem for G-convex
spaces which generalizes [1, Corollary 4.2] and {10, Theorem 5] for C-
spaces.

THEOREM 2. Let X be a Hausdorff topological space, (Y,D;Ty) a
G-convex space, and T : X —o Y and § :Y —o X multimaps. Suppose
that there exist a compact G-convex space (K,T'x) with K C X and a
multimap A : K — D such that

(1) for each x € K, Az C Tz, and Tz is I'-convex;

(2) K=U{Intx A"y:y € D};

(3) foreachyc Y, Syn K isI'-convex in (K,'x); and
(4) Y=U{Inty STz:z € K}.
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Then there exist points zo € K and yy € Y such that yo € Txg and
g € Syo-

Proof. Let

P=Ux€x{m}x5_z, M={(z,y) e X xY :y¢ Tz} and
N={(z,y) e KxD:y¢ Azx}.

Suppose that Te N S~z = 0 for all £ € K. Then for all (z,y) €
K xY, (z,y) € P implies (z,y) € M. Since {y € D : (z,y) € N} C
{yeY:yeTz}={yeY :(z,y) ¢ M}, and Tz is I'-convex for each
z € K, condition (1) of Theorem 1 is satisfied. By (2) it is clear that
condition (2) of Theorem 1 holds.

For each y € Y, since {z € K : (z,y) € P} = Syn K, by as-
sumption (3), condition (3) of Theorem 1 is also satisfied. By (4),
Y =U{Inty {y € Y : (z,y) € P} : z € K}, that is, condition (4) of
Theorem 1 holds. By Theorem 1, there exists a point 7 € K such that
{xo} x D C Nj that is, y ¢ Az for all y € D. Consequently, we have
Azo = 0, which contradicts assumption (2) (since yo € Azg for some
vo € D). This completes the proof. O

Note that, even if X and Y are C-spaces, Theorem 2 improves [10,
Theorem 5.

3. Main Results

Using our coincidence theorem, we obtain a new e-saddle point theo-
rem for G-convex spaces which generalizes [8, Theorem 1] for topological
vector spaces.

THEOREM 3. Let X be a Hausdorff topological space, (Y,I'y) a G-
convex space, f : X xY — R a real-valued function and € > 0. Suppose
that there exists a compact G-convex space (K,I'x) with K C X such
that

(1) forany (z,y) € X xY, inf,ey f(z,v) > —00 and sup,c x f(u,y)
< 400,
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(2) the function (x,y) — f(z,y) — inf,cy f(z,v) is e-transfer up-
per semicontinuous on K relative to 'Y, and the set {z € K :
f(z,y) > t} is a nonempty I'-convex set for each y € Y and
eacht e R;

(3) the function (z,y) — f(x,y) —sup,cx f(u,y) is (—e)-transfer
lower semicontinuous on Y relativeto K,and{y €Y : f(z,y) <
t} is a nonempty I'-convex set for each z € K and eacht € R.

Then f has a point (z%,y}) € K XY such that f(z,y?)—e < f(zf,yl) <
flat,y)+eforallze X andy €Y.

Proof. Let € > 0. Define multimaps A: K —< Y, T: X — Y and
S:Y — X by

Az ={y €Y : f(z,y) — inf f(z,v) <e}
Te={yeY: f(z,y) - if f(z,v) <e}
Sy={zeX: f(z,y) - ggg(f(u,y) > —&}.

Then for each € K, Az = T'z, and T'x is a nonempty I'-convex set. For
each z € K, there exists a y € Y such that f(z,y) —inf,cy f(z,v) <e.
By (2), there exists an open neighborhood N(z) of z in K and a point
y' € Y such that f(z,y") —infyey f(z,v) < € for all z € N(z), that is,
N(z) c A y';and hence r €e Intxy A™y'. Thus K = | J{Intx A"y :y €
Y'}. Moreover, Sy N K is a nonempty I-convex set for each y € Y by
(2). A similar argument shows by (3) that Y = | J{Inty S~z : z € K}.
By Theorem 2, there exists (z*,y*) € K x Y such that y* € Tz* and
z* € Sy*; that is, f(z,y*) —e < f(z*,y*) < f(e*,y)+eforallz € X
and y € Y. This completes the proof. g

For the case when X and Y are convex spaces in the sense of Lassonde
(3] and for mere upper (resp. lower) semicontinuous functions, Theorem
3 improves [8, Theorem 1].

From Theorem 3 we deduce the following new saddle point theorem
for spaces without linear structure.

THEOREM 4. Let X be a Hausdorff topological space, (Y,I'y) a
Hausdorff G-convex space and f : X X Y — R a real-valued function.

16



Coincidence and saddle point theorems on generalized convex spaces

Suppose that there exists a compact G-convex space (K,T'x) with K C
X such that

(1) for any (ZC, y) €X XK inf'véy f(l', ’U) > —oco and SUPy,ex f('LL, y)
< 400,

(2) the function (z,y) — f(z,y) — infyecy f(z,v) is transfer upper
semicontinuous on K relative to Y, the function ¢ — f(z,y)
is upper semicontinuous on K for each y € Y; and the set
{z € K : f(z,y) > t} is a nonempty I'-convex set for each
ye€Y andteR;

(3) the function (z,y) — f(x,y) — sup,¢ x f(u,y) is transfer lower
semicontinuous on Y relative to K, and {y € Y : f(z,y) < t} is
a nonempty I'-convex set for each x € K and each t € R;

(4) for every sequence {(Zn,Yn)}nen in K x Y such that (z,,y) is
an ey-saddle point of f and €, — 07, there exist a subsequence
{yn, tren and a point y* € Y such that

Iikminff(x,ynk) > f(z,y*) forallz e X.
—»C0O

Then f has a point (z*,y*) € K x Y such that f(z,y*) < f(z*,y*) <
flz*,y) forallz € X andy €Y.

Proof. For each n € N with ¢,, — 07, by Theorem 3, there is a point
(z},y:) € K x Y such that

f(z,y)) —en < f(zh,yn) < f(z},y) + €, forall (z,y) e X xY.

By (4), there exist a subsequence {y;, }xen and a point y* € Y such
that

liminf f(z,y,,) > f(z,y") foreachz € X.
k—o00

Since K is compact, there is a subnet {z},} .of {x},, } and 2* € K such
that {z}} converges to z*.
For each z € X and each «, we have

f&,y") = f(=",y") — f(zh,¥") + f(z5,¥7)
> f(z*,y") — f(zh,v") + f(z,95) — 260
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- and hence by the uppersemicontinuity of f(-,4*) on K.

f&*,y*) > fz*,y*) - Hm;up f(z5,y") + liminf f(z,y;)
> f(z,y").

Next, for each y € Y and each o, we have

fl&",y") = f(&",9*) — f(z",95) + F(=*,9a)
< fl=%y") — f(z9a) + flzh,y) + 2¢a

and hence by the uppersenﬁcontinuity of f(-,y) on K
f@*,y") < f(z*,y") - liminf f(z",y5) + limsup f(z,,9)
< =% y)-

Thus, (z*,y*) € K xY is a saddle point of f. This completes the
proof. O

Note that Theorem 4 is a far-reaching generalization of [8, Theorem
2] and [2, Theorem 3].

Similarly, many other results for convex spaces or C-spaces can be
extended to the framework of G-convex spaces. In the first author’s
works on G-convex spaces, he tried to restrict to write down only es-
sential things.
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