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COINCIDENCE AND SADDLE POINT THEOREMS
ON GENERALIZED CONVEX SPACES

SEHIE PARK AND IN-SOaK KIM

ABSTRACT. We give a ~ew coincidence theorem for multimaps on
generalized convex spaces and apply it to deduce c-saddle point and
saddle point theorems.

1. Introduction and Preliminaries

In [8], some E-saddle point and saddle point theorems for convex sets
in topological vector spaces were obtained. These new results generalize
the corresponding ones of Komiya [2].

Now it is well-known that convex subsets of topological vector spaces
are generalized to convex spaces due to Lassonde [3], which are further
extended to the generalized convex spaces or G-convex spaces due to
Park [4,5,6,7]. This new class of spaces contains many known spaces
having certain abstract convexity without linear structure; see [5].

In the present paper, we deduce a new coincidence theorem for mul
timaps on G-convex spaces, and use it to deduce new E-saddle point
and saddle point theorems. Consequently, we show that main results
in [8] holds for much larger class of spaces.

A multimap T : X -0 Y is a function from X into the power set
2Y of Y with fibers T-y := {x EX: y E Tx} for y E Y. A function
f : X --t lR on a topological space X is said to be lower (resp. upper)
semicontinuous if the set {x EX: f(x) > a} (resp. {x EX: f(x) <
a}) is open in X for every real number a.
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Given a set A, let (A) denote the collection of all nonempty finite
subsets of A and IAI the cardinality of A. Let.6.n be the standard
n-simplex.

A generalized convex space or a G-convex space (X, Dj r) consists
of a topological space X and a nonempty set D such that for each
A E (D) with IAI = n + 1, there exist a subset reA) of X and a
continuous function <PA : .6.n ---+ reA) such that <PA(.6.J) c r(J) for
every J E (A), where .6.J denotes the face of .6.n corresponding to
J E (A); that is, if.6.n = co{eo,el,··· ,en}, A = {ao,al,··· ,an}, and
J = {aio,ai1 ,··· ,aik} C A, then.6.J = co{eio,ei1 ,··· ,eik}.

Examples of G-convex spaces [6] are convex spaces [3], C-spaces [1],
and many others; see [5]. Given a G-convex space (X, D; r) with D c
X, a subset K of X is said to be r -convex if for each A E (D), A c K
implies reA) c K. For a nonempty subset K of X we define the
r -convex hull of K

r-co K := niB eX: B is r-convex and Kc B}.
Then the r -convex hull of K is the smallest r -convex set containing K.

If D = X, then (X,D;r) will be denoted by (X,r). Let IntKA
denote the interior of A in K.

Given c > 0, a function f : X x Y ---+ lR has an c-saddle point (x;, y;)
if

f(x, y;) - c < f(x;, y;) < f(x;, y) + c

for all x E X and y E Y; and a point (x*, y*) is a saddle point of f if

f(x,y*) ::;; f(x*,y*) ::;; f(x*,y)

for all x E X and y E Y; see [8].

Let X and Y be topological spaces, K a subset of X and L a subset
of Y. A function f : X x Y ---+ lR is said to be a-transfer lower (resp.
upper) semicontinuous on K relative to L if for each (x, y) E K x L,
f(x,y) > a (resp. f(x,y) < a) implies that there exists an open
neighborhood N(x) of x in K and a point y' EL such that f(z,y') >
a (resp. fez, y') < a) for all z E N(x); and transfer lower (resp.
upper) semicontinuous on K relative to L if f is a-transfer lower (resp.
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upper) semicontinuous on K relative to L for each a E JR.; see Tian
[9]. These concepts are proper generalizations of lower (resp. upper)
semicontinuous real-valued functions.

2. The Coincidence Theorem

We begin with the follo~nglemmasd~e to the first auth?r [41

LEMMA 1. Let X be a Hausdorff compact space and (Y, D; r) a G
convex space. Let T : X --Q Y and S : X --Q D be multimaps such that
the following conditions are satisfied:

(1) for each x E X, A E (Sx) implies r(A) c Tx; and
(2) X = U{Intx S-y: y E D}.

Then T has a continuous selection f : X ----+ Y such that f = 9 0 h,
where 9 : Lln ----+ Y and h : X ----+ Lln are continuous functions.

LEMMA 2. Let (X, r) be a Hausdorff compact G-convex space and
T : X --Q X a multimap such that Tx is a r -convex set for each x EX,
and X = U {Intx T-y: y E X}. Then T has a fixed point.

The following theorem improves and extends a result in [10, Theorem
1] to the case of a G-convex space.

THEOREM 1. Let X be a Hausdorff topological space, (Y, D; r y ) a
G-convex space, M and P subsets ofX x Y. Suppose that there exist
a compact G-convex space (K, r K) with K c X and a subset N of
K x D such that

(1) for each x E K, r-co {y E D : (x,y) rt N} c {y E Y : (x,y) rt
M};

(2) for each x E K with {y E D : (x, y) rt N} i- 0, there exists
y' E D such that x E IntK{x' E K : (x', y') rt N};

(3) for each y E ~ {x E K : (x,y) E P} is a r-convex subset of
(K,rK );

(4) Y = U{Inty {y E Y: (x,y) E P}: x E K}; and
(5) for all (x,y) E K x Y, (x,y) E P implies (x,y) EM.

Then there exists a point xQ E K such that {xQ} x DeN.
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Proof. Suppose. that th~ conclu,sion does. not .hold; that is, for each
x E K there is a point Yo E D such that (x,Yo) f/. N. For each x E K,
let

Sx = {y E D: (x,y) f/.·N}, Tx = {y E Y: (x,y) f/. M}.

Then for each x E K, r-co Sx c Tx by (1); K = U{IntK S-y : y E D}
by (2). Define a multimap S : K --<l Y by Sx := r-co Sx for x E K.
Since K = U{IntK S-y : y E Y}, by Lemma 1, there is a continuous
function I: K -+ Y such that I(x) E Sx c Tx for all x E K. Hence,
(x,l(x» (j. M for all x E K.

On the other hand, we define a multimap H : Y --<l K by

Hy:= {x E K: (x,y) E P} for y E Y

By (3), Ify isr~<:ony~xfqr~YE:lrYYE:;X,?lld.Y= U{Illty a-a; :a;E K}
by (4). A multimap F :.K --<l K defined by Fx:= Ho I(x) for x E K
has r-convex values and K = U{IntK F-y : y E K}. In fact, for
every x E K, there is ayE K such that I(x) E Inty H-y and so
x E j-(IntyH-y) c IntK I-(H-y) = IntKF-y by the continuity of
I. Since (K,rK) is a Hausdorff compact G-convex space, by Lemma
2, there is a point Xo E K such that Xo E Fxo = H(f(xo»; and hence
by (5), (xo,/(xo)) EM. This contradiction proves the theorem. 0

Note that, if X and Y are C-spaces, Theorem 1 reduces to [10,
Theorem 1].

Now we give a Fan-Browder type coincidence theorem for G-convex
spaces which generalizes [1, CorollarY' 4.2] aild [10, Theorem 5] for C
spaces.

THEOREM: 2. Let X be a Hailsdorff topological space, (Y, D; ry) a
G-convex space, and T : X --<l Y and S : Y --<l X multimaps. Suppose
that there exist a compact G-convex space (K, r K) with K c X and a
multimap A : K --<l D such that

(1) for each x E K, Ax c Tx, and Tx is r-convex;
(2) K =U {IntK A-y : y E D};
(3) for each y E Y, Syn K is r-convex in (K,rK ); and
(4) Y=U{IntyS-x:xEK}.
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Then there exist points Xo E K and Yo E Y such that Yo E Txo and
Xo E SYo·

Proof. Let

p = U XEX{X} X S-x, M = {(x,y) E X x Y: y tf- Tx} and

N = {(x, y) E K x D : y tf- Ax}.

Suppose that Tx n S-x = 0 for all x E K. Then for all (x, y) E
K x Y, (x, y) E P implies (x, y) E M. Since {y E D : (x, y) tf- N} c
{y E Y : y E Tx} = {y E Y : (x, y) tf- M}, and Tx is r-convex for each
x E K, condition (1) of Theorem 1 is satisfied. By (2) it is clear that
condition (2) of Theorem 1 holds.

For each y E Y, since {x E K : (x,y) E P} = Sy n J(, byas
sumption (3), condition (3) of Theorem 1 is also satisfied. By (4),
Y = U{Inty {y E Y : (x, y) E P} : X E K}, that is, condition (4) of
Theorem 1 holds. By Theorem 1, there exists a point x') E K .::;uch t1J.at
{xo} x DeN; that is, y tf- Axo for all y E D. Consequently, we have
Axo = 0, which contradicts assumption (2) (since Yo E Axo for some
Yo E D). This completes the proof. 0

Note that, eveI1 if X and Y are C-spaces, Theorem 2 improves [:iD,
Theorem 5].

3. Main Results

Using our coincidence theorem, we obtain a new c-saddle point theo
rem for G-convex spaces which generalizes [8, T'h~orem 1] for topological
vector spaces.

THEOREM 3. Let X be a Hausdorff topological space, (Y, ry) a G
convex space, f : X x Y ---+ JR a real-valued function "lnd c > O. 9t:ppose
that there exists a compact G-convex space (K, r K ) with K c X such
that

(1) for any (x,y) E XxY, infvEY f(x,'c-) > -00 andsuPuEx f(u,y)
< +00;
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(2) the function (x,y) ~ !(x,y) - infvEY!(x,v) is c-transferu~

per semicontinuous on K relative to Y, and the set {x E K :
!(x, y) > t} is a nonempty r -convex set for each y E Y and
each t E lR;

(3) the function (x,y) ~ !(x,y) - SUPuEX !(u,y) is (-c)-transfer
lower semicontinuous on Y relative to K, and {y E Y : f(x, y) <
t} is a nonempty r -convex set for each x E K and each t E lR.

Thenf has a point (x;,y;) E KxY such that f(x,y;)-c < f(x;,y;) <
f(x;,y) + e for all x E X and yE Y.

Proof Let e > O. Define multimaps A : K -0 Y, T : X -0 Y and
S: Y -0 X by

Ax = {y E Y: f(x,y) - inf f(x,v) < e}
vEY

Tx ={y E Y: f(x,y) - inf f(x,v) < c}
vEY

Sy = {x EX: f(x,y) - sup f(u,y) > -e}.
uEX

Then for each x E K, Ax = Tx, and Tx is a nonempty r -convex set. For
each x E K, there exists ayE Y such that !(x,y) -infvEY f(x,v) < e.
By (2), there e){ists an open neighborhood N(x) of x in K and a point
y' E Y such that !(z,y') - infvEY f(z,v) < e for all z E N(x), that is,
N(x) c A-y'; and hence x E IntK A-y'. Thus K = U{IntK A-y: yE
Y}. Moreover, By n K is a nonempty r-convex set for each y E Y by
(2). A similar argument shuws by (3) that Y = U{Inty S- x : x E K}.
By Theorem 2, there exists (x*, y*) E K x Y such that y* E Tx* and
x* E Sy*; that is, !(x,y*) - e < !(x*,y*) < !(x*,y) + c for all x EX
and y E Y. This completes the proof. 0

For the case when X and Y are convex spaces in the sense of Lassonde
[3] and for mere upper (resp. lower) semicontinuous functions, Theorem
3 improves [8, Theorem 1].

From Theorem 3 we deduce the following new saddle point theor.em
for spaces without linear structure.

THEOREM 4. Let X be a Hausdorff topological spa.ce, (Y, r y ) a
Hausdorff G-convex space and ! : X x Y --+ lR a real-valued function.
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Suppose that there exists a compact G-convex space (K, r K) with K c
X such that

(1) for any (x, y) E X x Y, infvEY f(x, v) > -00 and SUPuEX f(u, y)
< +00;

(2) the function (x,y) ~ f(x,y) - infvEY f(x,v) is transfer upper
semicontinuous on K relative to Y, the function x ~ f (x, y)
is upper semicontinuous on K for each y E Y; and the set
{x E K : f(x,y) > t} is a nonempty r-convex set for each
y E Y and t E R;

(3) the function (x,y) ~ f(x,y) - sUPuEX f(u,y) is transfer lower
semicontinuous on Y relative to K, and {y E Y: f(x,y) < t} is
a nonempty r -convex set for each x E K and each t E R;

(4) for every sequence {(xn, Yn)}nEN in K x Y such that (xn,Yn) is
an en-saddle point of f and En -+ 0+, there exist a subsequence
{Ynk hEN and a point y* E Y such that

liminf f(X,Ynk) 2: f(x,y*) for all x E X.
k-+oo

Then f has a point (x*,y*) E K x Y such that f(x,y*) $ f(x*,y*) $
f(x*,y) for all x E X and yE Y.

Proof. For each n E N with En -+ 0+, by Theorem 3, there is a point
(X~,y~) E K x Y such that

f(x, y~) - En < f(x~, y~) < f(x~, y) + en for all (x, y) E X x Y.

By (4), there exist a subsequence {y~JkEN and a point y* E Y such
that

liminff(x,y~k)2: f(x,y*) for each x E X.
k-+oo

Since K is compact, there is a subnet {x~}.of {x~J and x* E K such
that {x~} converges to x*.

For each x E X and each a, we have

f(x*, y*) = f(x*, y*) - f(x~, y*) + f(x~, y*)

> f(x*, y*) - f(x~, y*) + f(x, y:) - 2Ea
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and hencehy the uppersemicontinuity.ofJ(-, y~) on.K

f(x* ,y*) ~ f(x*, y*) -limsup f(x~,y*) + liminf f(x, y~)
a Cl<

~ f(x,y*).

Next, for each yE Y and each a, we have

f(x*,y*) = f(x*,y*) - f(x*,y~) + f(x*,y~)

< f(x*, y*) - f(x*, y~) + f(x~, y) + 2ca

and hence by the uppersemicontinuity of f (" y) on K

f(x*, y*) s f(x*, y*) -liminfj(x*, y~) + limsup f(x~,y)
a a

S f(x*,y)~

Thus, (x*, y*) E K X Y is a saddle. point of f. This completes the
prooL 0

Note that Theorem 4 is a far-reaching generalization of [8, Theorem
2] and [2, Theorem 3].

Similarly, many other results for convex spaces or C-spaces can be
extended to the framework of G-convex spaces. In the first author's
works on G-convex spaces, he tried to restrict to write down only es
sential things.
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