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Abstract

Applying a �xed point theorem for compact compositions of acyclic maps, we obtain acyclic versions of the von
Neumann intersection theorem, the minimax theorem, the Nash equilibrium theorem, and others. c© 2000 Elsevier Science
B.V. All rights reserved.
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0. Introduction

In 1991, the author obtained a Schauder-type �xed point theorem for compact acyclic multimaps
[14], which generalizes well-known theorems due to Himmelberg [7] and Kakutani [9] by replacing
the convex values of multimaps by the acyclic values. Recently, in [17], this theorem is extended
to compact acyclic maps de�ned on convex subsets of not-necessarily locally convex topological
spaces, and applied to existence of solutions of quasi-equilibrium problems in admissible topological
vector spaces (in the sense of Klee). For further generalizations of our theorem, see [20,15,16,18],
where it was shown that compact acyclic maps in the aforementioned theorems can be replaced by
compact compositions of acyclic maps or closed compact better admissible maps.
Applying our theorem for compact compositions of acyclic maps, in this paper, we obtain acyclic

versions of the von Neumann intersection theorem, the minimax theorem, the Nash equilibrium
theorem, and others.
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The main result (Theorem 1) is a collectively �xed point theorem. This is applied to obtain
generalizations (Theorems 2 and 3) of the von Neumann intersection theorem and acyclic versions
(Theorems 4 and 5) of the von Neumann minimax theorem. Moreover, we obtain a quasi-equilibrium
theorem (Theorem 6), from which we deduce an acyclic version (Theorem 7) of the Nash equilibrium
theorem.

1. Preliminaries

All spaces are assumed to be Hausdor� and a t.v.s. means a topological vector space.
A multimap or map F : X ( Y is a function from a set X into the set 2Y of nonempty subsets of

Y ; that is, a function with the values F(x)⊂Y for x ∈ X and the �bers F−(y)={x ∈ X : y ∈ F(x)}
for y ∈ Y . For A⊂X , let F(A) = ⋃ {F(x): x ∈ A}. For any B⊂Y , the (lower) inverse of B under
F is de�ned by

F−(B) = {x ∈ X : F(x) ∩ B 6= ∅}:
For any relation R⊂X × Y , R− denotes its inverse relation in Y × X .
For topological spaces X and Y , a map F : X ( Y is said to be closed if its graph

Gr(F) = {(x; y): y ∈ F(x); x ∈ X }
is closed in X × Y , and compact if F(X ) is contained in a compact subset of Y .
F : X ( Y is said to be upper semicontinuous (u.s.c.) if, for each closed set B⊂Y , F−(B) is

closed in X ; lower semicontinuous (l.s.c.) if, for each open set B⊂Y , F−(B) is open in X ; and
continuous if it is u.s.c. and l.s.c.
If F is u.s.c. with closed values, then F is closed. The converse is true whenever Y is compact.
Recall that a nonempty topological space is acyclic if all of its reduced �Cech homology groups

over rationals vanish. For nonempty subsets in a t.v.s., convex ⇒ star-shaped ⇒ contractible ⇒
acyclic ⇒ connected, and not conversely.
For topological spaces X and Y , a map F : X ( Y is called a Kakutani map whenever Y is a

convex subset of a t.v.s. and F is u.s.c. with compact convex values; and an acyclic map whenever
F is u.s.c. with compact acyclic values.
Let V(X; Y ) be the class of all acyclic maps F : X ( Y , and Vc(X; Y ) all �nite compositions of

acyclic maps, where the intermediate spaces are arbitrary topological spaces.
The following is a particular form of our previous work [15,16,18,20]:

Theorem A. Let X be a nonempty convex subset of a locally convex t.v.s. E and F ∈ Vc(X; X ).
If F is compact; then F has a �xed point x0 ∈ X ; that is; x0 ∈ F(x0).

A nonempty subset X of a t.v.s. E is said to be admissible (in the sense of Klee) provided that,
for every compact subset K of X and every neighborhood V of the origin 0 of E, there exists a
continuous map h : K → X such that x − h(x) ∈ V for all x ∈ K and h(K) is contained in a �nite
dimensional subspace L of E.
It is well known that every nonempty convex subset of a locally convex t.v.s. is admissible. Other

examples of admissible t.v.s. are ‘p, Lp(0; 1), Hp for 0¡p¡ 1, and many others; see [16,18] and
references therein.
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The following particular form of a �xed point theorem due to the author [16,18] is the basis of
our arguments in this paper. We give its simple proof for the sake of completeness.

Theorem B. Let E be a t.v.s. and X an admissible convex subset of E. Then any compact map
F ∈ Vc(X; X ) has a �xed point.

Proof. Let V be a fundamental system of neighborhoods of the origin 0 of E. Since F is closed
and compact, it is su�cient to show that for any V ∈ V, there exists an xV ∈ X such that
(xV + V ) ∩ F(xV ) 6= ∅.
Since F(X ) is a compact subset of the admissible subset X , there exist a continuous map h :

F(X ) → X and a �nite-dimensional subspace L of E such that x − h(x) ∈ V for all x ∈ F(X )
and h(F(X ))⊂L ∩ X . Let M :=h(F(X )). Then M is a compact subset of L and hence P:=coM
is a compact convex subset of L ∩ X . Note that h : F(X ) → P and F |P : P ( F(X ). Since
h ◦ (F |P) ∈ Vc(P; P), by Theorem A, it has a �xed point xV ∈ P; that is, xV ∈ hF(xV ) and hence
xV = h(y) for some y ∈ F(xV )⊂F(X ). Since y − h(y) ∈ V , we have y ∈ h(y) + V = xV + V .
Therefore, (xV + V ) ∩ F(xV ) 6= ∅.

Recall that a real-valued function f : X → R on a topological space is lower [resp. upper]
semicontinuous (l.s.c.) [resp. u.s.c.] if {x ∈ X : f(x)¿r} [resp. {x ∈ X : f(x)¡r} is open for
each r ∈ R. If X is a convex set in a vector space, then f is quasiconcave [resp. quasiconvex] if
{x ∈ X : f(x)¿r} [resp. {x ∈ X : f(x)¡r}] is convex for each r ∈ R.
We need the following [2]:

Berge’s Theorem. Let X and Y be topological spaces; f : X × Y → R a real function; F : X ( Y
a multimap; and

f̂(x):= sup
y∈F(x)

f(x; y); G(x):={y ∈ F(x): f(x; y) = f̂(x)} for x ∈ X:

(a) If f is u.s.c. and F is u.s.c. with compact values; then f̂ is u.s.c.
(b) If f is l.s.c. and F is l.s.c.; then f̂ is l.s.c.
(c) If f is continuous and F is continuous with compact values; then f̂ is continuous and G is

u.s.c.

Let {Xi}i∈I be a family of sets, and let i ∈ I be �xed. Let

X =
∏
j∈I
Xj and X i =

∏
j∈I\{i}

Xj:

If xi ∈ X i and j ∈ I \{i}, let xij denote the jth coordinate of xi. If xi ∈ X i and xi ∈ Xi, let [xi; xi] ∈ X
be de�ned as follows: its ith coordinate is xi and, for j 6= i, the jth coordinate is xij. Therefore, any
x ∈ X can be expressed as x = [xi; xi] for any i ∈ I , where xi denotes the projection of x onto X i.
For A⊂X , xi ∈ X i, and xi ∈ Xi, let

A(xi) = {yi ∈ Xi: [xi; yi] ∈ A} and A(xi) = {yi ∈ X i: [yi; xi] ∈ A}:
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2. Intersection theorems

We begin with the following collectively �xed point theorem, which is equivalent to Theorem B
for V(X; X ):

Theorem 1. Let {Xi}ni=1 be a family of convex sets; each in a t.v.s. Ei; Ki a nonempty compact
subset of Xi; and Ti: X =

∏n
j=1 Xj ( Ki an acyclic map for each i; 16i6n. If X is admissible in

the t.v.s. E =
∏n
j=1 Ej; there exists an x̂ ∈ K =

∏n
j=1 Kj such that x̂i ∈ Ti(x̂) for each i.

Proof. De�ne T : X ( K by T (x) =
∏n
j=1 Tj(x) for each x ∈ X . Then T is clearly a closed map.

Since the product of two acyclic sets is acyclic by the K�unneth theorem, T is an acyclic map. Since
K is compact in X , by Theorem B, T has a �xed point x̂ ∈ K ; that is, x̂ ∈ T (x̂) and x̂i ∈ Ti(x̂).

Similarly, we can obtain a more general result:

Theorem 1′. Let I be any index set; {Xi}i∈I a family of convex sets; each in a t.v.s. Ei; Ki a
nonempty compact subset of Xi; and Ti : X =

∏
j∈I Xj ( Ki an u.s.c. map for each i ∈ I . Suppose

that; for each x ∈ X; Ti(x) is closed convex except a �nite number of i’s for which Ti(x) is closed
acyclic. If X is admissible in E=

∏
j∈I Ej; then there exists an x̂ ∈ K=

∏
j∈I Kj such that x̂i ∈ Ti(x̂)

for each i ∈ I .

Remark. (1) If n= 1, then Theorem 1 reduces to Theorem B for V(X; X ).
(2) If each Ti is convex-valued and each Ei is locally convex, Theorem 1′ reduces to Idzik [8,

Theorem 5].

From Theorem 1, we obtain the following von Neumann-type intersection theorem:

Theorem 2. Let {Xi}ni=1 be a family of convex sets; each in a t.v.s. Ei; Ki a nonempty compact
subset of Xi; and Ai a closed subset of X =

∏n
j=1 Xj such that Ai(x

i) is an acyclic subset of Ki for
each xi ∈ X i; where 16i6n. If X is admissible in E =∏n

j=1 Ej; then
⋂n
j=1 Aj 6= ∅.

Proof. We use Theorem 1 with Ti : X ( Ki de�ned by Ti(x) = Ai(xi) for x ∈ X . Then, for each
x ∈ X , we have

(x; y) ∈ Gr(Ti)⇔ (xi; xi) ∈ Xi × X i and y ∈ Ai(xi)⊂Ki
⇔ (xi; xi; y) ∈ Xi × (Ai ∩ (X i × Ki));

which implies that Gr(Ti) is closed in X ×Ki. Hence, each Ti is a compact closed map with acyclic
values; that is, Ti is an acyclic map. Therefore, by Theorem 1, there exists an x̂ ∈ K such that
x̂i ∈ Ti(x̂) for all i. Since x̂i ∈ Ki⊂Xi, we have x̂ = [x̂ i; x̂i] ∈ Ai for all i.
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Similarly, we can obtain a more general result than Theorem 2 as follows:

Theorem 2′. Let I be any index set; {Xi}i∈I a family of convex sets; each in a t.v.s. Ei; Ki a
nonempty compact subset of Xi; and Ai a closed subset of X =

∏
j∈I Xj for each i ∈ I . Suppose

that for each xi ∈ X i; Ai(xi) is a convex subset of Ki except a �nite number of i’s for which Ai(xi)
is an acyclic subset of Ki. If X is admissible in E =

∏
j∈I Ej; then

⋂
j∈I Aj 6= ∅.

Remark. (1) If I = {1; 2}, Ei are Euclidean, Xi = Ki, and Ai(xi) are nonempty and convex, then
Theorem 2 reduces to the intersection theorem of von Neumann [13].
(2) Theorem 2′ holds without the admissibility of X whenever each Ai(xi) is nonempty and

convex; see [5, Theorem 2, 8, Corollary 1].

From Theorem B, we have the following intersection theorem:

Theorem 3. Let X be a compact space and Y an admissible compact convex subset of a t.v.s. E.
Let A and B be two closed subsets of X × Y such that
(1) for each x ∈ X; A(x) = {y ∈ Y : (x; y) ∈ A} is acyclic; and
(2) for each y ∈ Y; B(y) = {x ∈ X : (x; y) ∈ B} is acyclic.
Then A ∩ B 6= ∅.

Proof. De�ne two multimaps S : X ( Y and T : Y ( X by S(x)=A(x) and T (y)=B(y) for x ∈ X
and y ∈ Y . Then S has closed graph Gr(S) = A and hence, has closed acyclic values. Since Y is
compact, S is u.s.c. and hence S ∈ V(X; Y ). Similarly, T has closed graph Gr(T ) = B− in Y × X
and hence, has closed acyclic values. Since X is compact, T is u.s.c. and T ∈ V(Y; X ). Note that
S ◦ T ∈ Vc(Y; Y ) is compact. Therefore, by Theorem B, S ◦ T has a �xed point y0 ∈ Y ; that is,
y0 ∈ (S ◦ T )(y0). Then there exists an x0 ∈ T (y0) such that y0 ∈ S(x0); that is,

(x0; y0) ∈ Gr(S) = A and (x0; y0) ∈ Gr(T−) = B:

Remark. If E is locally convex and if the acyclicity is replaced by “nonempty and convex”, then
Theorem 3 reduces to Chang [3, Theorem 3], which generalizes the intersection theorem of von
Neumann [13]. Note that Chang’s method relied on some results about separating disjoint graphs.

3. Minimax theorems

From Theorem 3, we have the following von Neumann-type minimax theorem:

Theorem 4. Let X be a compact space and Y an admissible compact convex subset of a t.v.s.;
and f : X × Y → R a continuous real function. Suppose that for each x0 ∈ X and y0 ∈ Y; the sets{

x ∈ X : f(x; y0) = max
�∈X

f(�; y0)
}
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and {
y ∈ Y : f(x0; y) = min

�∈Y
f(x0; �)

}

are acyclic. Then we have

max
x∈X

min
y∈Y

f(x; y) = min
y∈Y

max
x∈X

f(x; y):

Proof. Let

S(x):=
{
y ∈ Y : f(x; y) = min

�∈Y
f(x; �)

}

and

T (y):=
{
x ∈ X : f(x; y) = max

�∈X
f(�; y)

}
:

Since f is continuous and X; Y are compact, each S(x) and T (y) are nonempty and closed for all
x ∈ X and y ∈ Y . Moreover, by Berge’s theorem, S : X ( Y and T : Y ( X are u.s.c. with closed
values. Therefore A:=Gr(S) and B:=Gr(T−) are closed subsets in X × Y . Therefore, by Theorem
3, there exists an (x0; y0) ∈ A ∩ B; that is,

max
x∈X

f(x; y0) = f(x0; y0) = min
y∈Y

f(x0; y):

This implies

min
y∈Y

max
x∈X

f(x; y)6max
x∈X

f(x; y0) =f(x0; y0)

=min
y∈Y

f(x0; y)6max
x∈X

min
y∈Y

f(x; y):

On the other hand, we clearly have

min
y∈Y

max
x∈X

f(x; y)¿max
x∈X

min
y∈Y

f(x; y):

Therefore, we have the conclusion.

Remark. (1) In the proof, we notice the existence of a saddle point (x0; y0) ∈ X × Y under the
hypothesis of Theorem 4; that is,

max
x∈X

f(x; y0) = f(x0; y0) = min
y∈Y

f(x0; y):

(2) For Euclidean spaces or locally convex t.v.s., if acyclicity is replaced by convexity, then
Theorem 4 reduces to the von Neumann minimax theorem [12] or Fan [5, Theorem 3], respectively.
(3) In case the acyclicity is replaced by convexity, Chang [3, Theorem 4] obtained Theorem 4

under the assumption that X is a compact subset of any t.v.s. and Y is a compact convex subset of
a locally convex t.v.s.
(4) Note that Debreu [4] obtained Theorem 4 for the case X and Y are contractible polyhedra

and acyclicity is replaced by contractibility. Since Theorem A for V(X; X ) holds for a contractible
polyhedra X by the classical results of Eilenberg-Montgomery or Begle [1], by following our method,
we can obtain Debreu’s result; see [19].
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The following generalization of the von Neumann minimax theorem [12] is a simple consequence
of Theorems 3 and 4.

Theorem 5. Let X; Y; and f be the same as in Theorem 4. Suppose that

(1) for every x ∈ X and � ∈ R; {y ∈ Y : f(x; y)6�} is acyclic; and
(2) for every y ∈ Y and � ∈ R; {x ∈ X : f(x; y)¿�} is acyclic.
Then we have

max
x∈X

min
y∈Y

f(x; y) = min
y∈Y

max
x∈X

f(x; y):

4. Equilibrium theorems

Theorem 1 has the following equivalent form of quasi-equilibrium theorem:

Theorem 6. Let {Xi}ni=1 be a family of convex sets; each in a t.v.s. Ei; Ki a nonempty compact
subset of Xi; Si : X ( Ki a closed map; and fi; gi : X = X i × Xi → R u.s.c. functions for each i.
Suppose that for each i;
(i) gi(x)6fi(x) for each x ∈ X ;
(ii) the function Mi de�ned on X by

Mi(x) = max
y∈Si(x)

gi(xi; y) for x ∈ X
is l.s.c.; and

(iii) for each x ∈ X; the set
{y ∈ Si(x): fi(xi; y)¿Mi(x)}

is acyclic.
If X is admissible in E =

∏n
j=1 Ej; then there exists an x̂ ∈ K such that for each i;

x̂i ∈ Si(x̂) and fi(x̂
i; x̂i)¿gi(x̂

i; y) for all y ∈ Si(x̂):

Proof. For each i, 16i6n, de�ne a map Ti : X ( Ki by

Ti(x) = {y ∈ Si(x): fi(xi; y)¿Mi(x)}
for x ∈ X . Note that each Ti(x) is nonempty by (ii) since Si(x) is compact and gi(xi; ·) is u.s.c. on
Si(x). We show that Gr(Ti) is closed in X × Ki. In fact, let (x�; y�) ∈ Gr(T ) and (x�; y�) → (x; y).
Then

fi(xi; y)¿ lim
�
fi(xi�; y�)¿ lim

�
Mi(x�)

¿ lim
�
Mi(x�)¿Mi(x)

and, since Gr(Si) is closed in X × Ki, y� ∈ Si(x�) implies y ∈ Si(x). Hence, (x; y) ∈ Gr(Ti). Since
Ti is compact, each Ti is acyclic by (iii). Therefore, by Theorem 1, there exists an x̂ ∈ K such that
x̂i ∈ Ti(x̂).



90 S. Park / Journal of Computational and Applied Mathematics 113 (2000) 83–91

Remark. (1) If fi ≡ gi ≡ 0 for all i, then Theorem 6 reduces to Theorem 1.
(2) If the set in (iii) is nonempty convex, fi ≡ gi is continuous, and Si is continuous, then Theorem

6 can be extended to any family {Xi}i∈I . In case each Ei is locally convex, this is due to Idzik
[8, Theorem 7].

From Theorem 6, we have the following generalization of the Nash equilibrium theorem:

Theorem 7. Let {Xi}ni=1 be a family of nonempty compact convex subsets; each in a t.v.s. Ei and
for each i; let fi : X → R be a continuous function such that
(1) for each xi ∈ X i and each � ∈ R; the set

{xi ∈ Xi: fi(xi; xi)¿�}
is empty or acyclic.
If X is admissible in E =

∏n
j=1 Ej; there exists a point x̂ ∈ X such that

fi(x̂) = max
yi∈Xi

fi(x̂
i; yi) for all i; 16i6n:

Proof. Apply Theorem 6 with fi = gi and Si(x) = Xi for x ∈ X . Then (ii) follows from Berge’s
theorem, and the set in (iii) is nonempty and acyclic by (1). Therefore, we have the conclusion.

Remark. (1) If xi 7→ fi(xi; xi) is quasiconcave for each xi ∈ X i and Ei is Euclidean for each i ∈ I ,
then Theorem 7 reduces to Nash [11, Theorem].
(2) If the acyclicity is replaced by convexity, then Theorem 7 holds without assuming the ad-

missibility of X ; see [6, Theorem 4]. This was extended for any in�nite family {Xi}i∈I by Ma [10,
Theorem 4].
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