
GENERALIZED BIRKHOFF-KELLOGG

TYPE THEOREMS AND APPLICATIONS

Sehie Park

Abstract. We obtain very general Birkhoff-Kellogg type theorems on eigenvectors
of broad classes of compact multimaps which appear in nonlinear analysis and alge-
braic topology. These are applied to fixed point and best approximation problems

on such classes of multimaps defined on spheres of normed vector spaces.

1. Introduction

We obtain very general Birkhoff-Kellogg type theorems on eigenvectors as sim-

ple consequences of fixed point theorems. In fact, we obtain generalized forms of

such theorems on broad classes of compact multimaps and apply them to fixed

point and best approximation problems on spheres of normed vector spaces.

In 1922, Birkhoff and Kellogg [BK] obtained a result on invariant directions of

continuous maps defined on function spaces. One of its generalizations (see Granas

et al. [GGJ, Gr1]) is as follows:
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Theorem. Let E be an infinite dimensional Banach space and S the boundary of

the unit ball B = B(0, 1). Let h : S → E be a compact map such that ∥h(x)∥ ≥
α > 0 for all x ∈ S. Then there exist x ∈ S and λ > 0 such that x = λh(x); that

is, h has an invariant direction.

This has been generalized by a number of authors. See [Y, FuM, M, CI, DG,

MV, CY, FoM, P6] and others. For an overview and up to date developments on

eigenvector problems, see [FoM].

On the other hand, Nussbaum [N] showed that any k-set-contraction f : S → S,

k < 1, has a fixed point, and Massatt [Ms] extended this to a condensing map

f : S → S. Note that any compact map in a Banach space is condensing. Later

Lin [Li2] extended and applied Massatt’s result to best approximation and fixed

point problems for condensing non-selfmaps defined on spheres. Lin’s results were

strengthend and extended by the present author [P6]. Note that most of the above-

mentioned works concern with single-valued continuous maps and were obtained

from degree theory.

Recently, the present author [P2-7] initiated the study of fixed points of broad

classes of multimaps called admissible (see section 2) and obtained very general

fixed point theorems and some related results.

In this paper, we obtain the Birkhoff-Kellogg type theorems for admissible

compact multimaps from a fixed point theorem in [P7] and apply them to fixed

point and best approximation problems for such multimaps defined on spheres of

normed vector spaces of infinite dimension.

2. Preliminaries

A multimap or set-valued map (simply, map) F : X → 2Y is a function with

nonempty set-values F (x) ⊂ Y for each x ∈ X. The set {(x, y) : y ∈ F (x)} is

called either the graph of F or, simply, F . So (x, y) ∈ F if and only if y ∈ F (x).
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For topological spaces X and Y , a map F : X → 2Y is upper semicontinuous

(u.s.c.) if, for each closed set B ⊂ Y , F−1(B) = {x ∈ X : F (x) ∩B ̸= ∅} is closed

in X. It is well-known that if Y is compact Hausdorff and F (x) is closed for each

x ∈ X, then F is u.s.c. if and only if the graph of F is closed in X × Y . A map

F : X → 2Y is said to be compact if F (X) is contained in a compact subset of Y .

A nonempty topological space is acyclic if all of its reduced Čech homology groups

over rationals vanish. In a topological vector space, any convex hulls of its finite

subsets will be called polytopes.

Given a class X of maps, X(X,Y ) denotes the set of all maps F : X → 2Y

belonging to X, and Xc the set of all finite composites of maps in X.
A class A of maps is one satisfying the following:

(i) A contains the class C of (single-valued) continuous functions;

(ii) each F ∈ Ac is u.s.c. and compact-valued; and

(iii) for any polytope P , each F ∈ Ac(P, P ) has a fixed point, where the inter-

mediate spaces are suitably chosen.

Examples of A are C, the Kakutani maps K (with convex values and codomains

are convex spaces), the Aronszajn maps M (with Rδ values) [Gr], the acyclic

maps V (with acyclic values), the Powers maps Vc, the O’Neill maps N (with

values consisting of one or more m acyclic components, where m is fixed) [Gr], the

approachable maps A in topological vector spaces [BD], admissible maps in the

sense of Górniewicz [G], permissible maps in Dzedzej [Dz], and others. Moreover,

we define

F ∈ Aσ
c (X,Y ) ⇐⇒ for any σ-compact subset K of X, there is a Γ ∈ Ac(K,Y )

such that Γ(x) ⊂ F (x) for each x ∈ K.

F ∈ Aκ
c (X,Y ) ⇐⇒ for any compact subset K of X, there is a Γ ∈ Ac(K,Y )

such that Γ(x) ⊂ F (x) for each x ∈ K.

For examples of admissible classes of multimaps, see [P2-8], [PK]. Recently,

the author established the KKM theory and the fixed point theory for admissible

maps; see [P3-6].

In this paper, we assume that A satisfies the following:

(∗) if F ∈ A(X,E), where E is a topological vector space and X ⊂ E, and if

λ > 0, then λF ∈ A(X,E) where (λF )(x) := λ(F (x)) ⊂ E for x ∈ X.
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A nonempty subset of X of a Hausdorff topological vector space E is said to

be admissible (in the sense of Klee) provided that, for every compact subset K of

X and every neighborhood V of the origin 0 of E, there exist a continuous map

h : K → X such that x − h(x) ∈ V for all x ∈ K and h(K) is contained in a

finite dimensional subspace L of E. For examples of admissible sets, see [P8] and

references therein.

We need the following due to the author [P8].

Theorem 0. Let X be an admissible convex subset of a Hausdorff topological

vector space E. If T ∈ Aκ
c (X,X) is compact, then T has a fixed point.

Note that Theorem 0 has a large number of historically well-known particular

forms. See [P8].

Bd, Int, and denote the boundary, interior, and closure, respectively.

3. The Birkhoff-Kellogg type theorems

For a subset X of a vector space E and a multifunction F : X → 2E , we say

that F has an eigenvalue (a proper value) if the inclusion

µx ∈ Fx

has a solution x0 ∈ X for some real µ ̸= 0, and that F has an invariant direction

(a positive eigenvalue) whenever µ > 0.

From Theorem 0, we obtain the following generalized Birkhoff-Kellogg type

theorems :
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Theorem 1. Let U be a convex neighborhood of 0 in a Hausdorff topological vector

space E such that U is admissible, and F ∈ Aκ
c (BdU,E) a compact map. Suppose

that there is a compact extension G ∈ Aκ
c (U,E) of F such that

(0) λG(U) ∩ U = ∅ for some number λ.

Then F has at least an eigenvalue.

Proof. Note that λG ∈ Aκ
c (U,E) is compact and has no fixed point. Let p : E → R

be the Minkowski functional of U . Since 0 ∈ U , p is continuous. Define r : E → U

by r(x) = x for x ∈ U and r(x) = p(x)−1x for x /∈ U . Then r is a continuous

retraction of E onto U . Let F ′ = r(λG) ∈ Aκ
c (U,U). Since λG is compact, so is

F ′. Therefore, by Theorem 0, F ′ has a fixed point x0 ∈ U ; that is, x0 ∈ r(λG)(x0).

We have x0 = r(y0) for some y0 ∈ (λG)(x0). Note that y0 /∈ U by (0). Therefore,

x0 = r(y0) = p(y0)
−1y0 ∈ BdU and hence p(y0)x0 = y0 ∈ (λG)(x0) = (λF )(x0).

This completes our proof.

Remark. If λ > 0, then F has an invariant direction.

Theorem 2. Let U,E, and F be the same as in Theorem 1. Suppose that

(1) BdU is a retract of U ; and

(2) λF (BdU) ∩ U = ∅ for some number λ.

Then F has an eigenvalue.

Proof. Let r′ : U → BdU be the retraction and G = Fr′ ∈ Aκ
c (U,E). Then G is

a compact extension of F and (2) implies (0). Applying Theorem 1, we have the

conclusion.

Remarks. 1. If F = f ∈ C(U,E), Theorem 2 reduces to Yamamuro [Y, Theorem

2], which extends the Birkhoff-Kellogg theorem.

2. A slightly different version of Theorem 2 was due to Park [P6, Theorem 8]

with different proof using a Leray-Schauder type principle.

From Theorem 2, we obtain the following:
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Theorem 3. Let S be the unit sphere of a normed vector space E of infinite

dimension, and F ∈ Aκ
c (S,E) a compact map such that 0 /∈ F (S). Then F has an

invariant direction.

Proof. Let B be the unit ball. Since E is infinite dimensional, by Dugundji [D,

Lemma 6.1], S = BdB is a retract of B. Since 0 /∈ F (S) and F (S) is compact,

there exists a number λ > 1 such that λF (S) ∩B = ∅. Therefore, by Theorem 2,

F has an invariant direction.

Remarks. 1. Furi and Martelli [FuM, Theorem 6; M, Theorem 2] is a Banach

space version of Theorem 3 for F ∈ V(S,E).

2. Even for a single-valued map F = f ∈ C(S,E), Theorem 3 improves the

Birkhoff-Kellogg theorem.

3. Martelli [M] gave an example that Theorem 3 does not hold if the compact

map F is replaced by a single-valued condensing map or a k-set-contraction, k < 1.

By a positive cone in a normed vector space E we mean a closed convex subset

C of E such that C ∩ (−C) = {0}, αC = C for every α > 0, and C has nonzero

vectors.

Theorem 4. Let S be the unit sphere and C a positive cone of a normed vector

space E of infinite dimension. Let F ∈ Aκ
c (S ∩ C,C) be a compact map such that

0 /∈ F (S ∩ C). Then F has an invariant direction.

Proof. The set S ∩ C is an absolute retract since it is a retract of the convex set

C\{0} (See Hu [H]). Therefore, there exists a retraction r : S → S ∩ C. Consider

the map Fr ∈ Aκ
c (S,C) ⊂ Aκ

c (S,E) and apply Theorem 3.

Remarks. 1. For F ∈ V(S ∩ C,C), Theorem 4 reduces to a form of Furi and

Martelli [FM, Theorem 7].

2. Note that Theorem 4 simplifies results due to Morgenstern and Schaefer.

See Bonsall [B, pp.51-52].

3. For a single-valued map F , a similar result to Theorem 4 was proved in [KL,

GGJ, Gr1] by different arguments.

4. Fixed point and best approximation theorems on spheres

In this section, we obtain some consequences of Theorems 3 and 4. The following

is immediate from Theorem 4:
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Theorem 5. Let S be the unit sphere and C a positive cone of a normed vector

space E of infinite dimension, and F ∈ Aκ
c (S ∩ C,S ∩ C) a compact map. Then

F has a fixed point.

Remark. Fournier and Martelli [FoM, Corollary 1.5] obtained a particular form of

Theorem 5 for a Banach space E and F ∈ Vc(S∩C, S∩C), by using index theory.

From Theorem 3, we have

Theorem 6. Let S be the sphere with center 0 and radius a > 0 in a normed

vector space E of infinite dimension. Then any compact map F ∈ Aκ
c (S, S) has a

fixed point.

Remark. Fournier and Martelli [FoM, Corollary 1.3] obtained a particular form of

Theorem 6 for a Banach space E and F ∈ Vc(S, S), by using index theory. Note

that, for a Banach space E, Massatt [Ms, Theorem 3] showed that the compact

map F in Theorem 6 can be replaced by a single-valued condensing map, and

Fournier and Martelli [FoM, Corollary 3.7] by an α-contraction F ∈ Vc(S, S) with

constant p < 1.

Let X be a subset of a vector space E and x ∈ E. The inward set IX(x) of X

at x is defined by

IX(x) = {x+ r(y − x) : y ∈ X, r > 0}.

For a normed vector space E,

d(x,X) = inf{∥x− y∥ : y ∈ X}.

From Theorem 6 we obtain the following best approximation theorem:
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Theorem 7. Let S be the sphere with center 0 and radius a > 0 in a normed

vector space E of infinite dimension, and F ∈ Aσ
c (S,E) a compact map such that

∥y∥ ≥ a for all y ∈ F (S). Then either F has a fixed point u ∈ S or there exist a

point u ∈ S and a point v ∈ F (u) such that

0 < ∥u− v∥ = d(v, IB(u)).

Proof. Let B be the closed ball with center 0 and radius a, and r : E\IntB → S

the radial projection; that is, r(x) = x for x ∈ S and r(x) = ax/∥x∥ for x /∈ S.

Then r is a continuous retraction and rF ∈ Aκ
c (S, S) is compact. Therefore, by

Theorem 6, rF has a fixed point u ∈ S; that is, u ∈ rF (u). Hence u = r(v) for

some v ∈ F (u). If v ∈ S, then u = r(v) = v ∈ F (u) and u is a fixed point. If

v /∈ S, then

0 < ∥u− v∥ = ∥r(v)− v∥ = ∥ a

∥v∥
v − v∥ = ∥v∥ − a.

For any x ∈ B, we have

∥v∥ − a ≤ ∥v∥ − ∥x∥ ≤ ∥v − x∥

and hence

0 < ∥u− v∥ = d(v,B).

Now, we show that

∥u− v∥ ≤ ∥v − x∥ for all x ∈ IB(u).

In fact, for x ∈ IB(u)\B, there exist y ∈ B and c > 1 such that x = u+ c(y − u).

Suppose that ∥u− v∥ > ∥v − x∥. Since

1

c
x+ (1− 1

c
)u = y ∈ B,
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we have

∥v − y∥ ≤ 1

c
∥v − x∥+ (1− 1

c
)∥v − u∥ < ∥u− v∥,

which contradicts ∥u− v∥ = d(v,B). Moreover, since ∥ ∥ is continuous, we have

∥u− v∥ ≤ ∥v − x∥ for all x ∈ IB(u).

This completes our proof.

Remarks. 1. If E is a Banach space and F is a single-valued condensing map, then

the conclusion still holds. See Lin [Li, Theorem 1] and Park [P7, Theorem 2].

2. Without the compactness of F , the conclusion of Theorem 7 does not hold.

For example, the antipodal map on S is not compact. Moreover, see the example

in [Li1].

From Theorem 7, we have the following fixed point theorems which extend

Theorem 6:

Theorem 8. Let S,E, and F be the same as in Theorem 7 such that ∥y∥ ≥ a

for all y ∈ F (S). Then F has a fixed point if, for each x ∈ S\F (x), one of the

following conditions holds:

(i) For each y ∈ F (x), there exists a z ∈ IB(x) such that

∥x− y∥ > ∥y − z∥.

(ii) For each y ∈ F (x), there exists a number λ (real or complex, depending on

whether E is real or complex) such that

|λ| < 1 and λx+ (1− λ)y ∈ IB(x).

(iii) F (x) ⊂ IB(x).

(iv) For each y ∈ F (x), there exists a z ∈ B such that

∥x− y∥ > ∥y − z∥.

(v) lim
h→0+

d[(1− h)x+ hy, B]/h = 0.

(vi) For each y ∈ F (x), there exists a λ (as above) such that

|λ| < 1 and λx+ (1− λ)y ∈ B.

(vii) F (x) ⊂ IFB(x) = {x+ c(u− x) : u ∈ B, Re(c) > 1
2}.

(viii) F (x) ⊂ S.
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Proof. (i) Suppose that F has no fixed point. Then, by Theorem 7, there exist a

u ∈ S and a v ∈ F (u) such that

0 < ∥u− v∥ = d(v, IB(u)).

By (i), for v ∈ F (u), there exists a z ∈ IB(u) such that

∥u− v∥ > ∥v − z∥.

This is a contradiction.

(ii) Let z = λx+ (1− λ)y. If x ̸= y, then

∥y − z∥ = ∥λx− λy∥ = |λ| ∥x− y∥ < ∥x− y∥

since |λ| < 1. Therefore, (ii) =⇒ (i).

(iii) For λ = 0, λx+ (1− λ)y = y ∈ IB(x) for each y ∈ F (x). Hence, (iii) =⇒

(ii).

(iv) Since z ∈ B ⊂ IB(x), (iv) =⇒ (i).

(v) It is known that (iii) ⇐⇒ (v). See [P1] for references.

(vi) It is clear that (vi) =⇒ (ii).

(vii) It is well-known that (vii) ⇐⇒ (vi). See [P1].

(viii) Note that (viii) implies any of (i)-(vii).

Theorem 9. Let S,E, and F be the same as in Theorem 7 such that ∥y∥ ≥ a for

all y ∈ F (S). Then F has a fixed point if one of the following conditions holds.

(ix) F (x) ∩ {αx : α > 1} = ∅ for each x ∈ S.

(x) ∥x− y∥2 ≥ ∥y∥2 − a2 for each x ∈ S and y ∈ F (x).

(xi) ∥x− y∥ ≥ ∥y∥ for each x ∈ S and y ∈ F (x), x ̸= y.
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Proof. (ix) Let r : E\IntB → S be the radial projection. Then rF ∈ Aκ
c (S, S) is

a compact map. From Theorem 6, rF has a fixed point u ∈ S; that is, there exists

a u ∈ S such that u ∈ rF (u). Hence u = r(w) for some w ∈ F (u). Then

u = r(w) =
a

∥w∥
w and w =

∥w∥
a

u ∈ F (u).

By (ix), we have ∥w∥/a ≤ 1 and hence ∥w∥ ≤ a. On the other hand, since ∥y∥ ≥ a

for all y ∈ F (S), we have ∥w∥ = a, whence u = w is a fixed point of F .

(x) If y = αx in ∥x− y∥2 ≥ ∥y∥2 − a2, then α ≤ 1. Therefore, (x) implies (ix).

(xi) Clearly (xi) =⇒ (x) and (xi) =⇒ (iv) with z = 0.

Remarks. 1. Single-valued versions of Theorems 8 and 9 for a Banach space and

condensing maps are given in [Li2, P7].

2. It is open that whether Theorems 5-9 hold or not for condensing maps F in

Aκ
c .
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