FIXED POINTS OF MULTIMAPS ON ORDERED SPACES
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ABSTRACT. Let F' : X — X be a multimap on an arc X or, more generally, a
connected ordered space X with two end points. If F' has connected graph, then
F has a fixed point. We deduce several consequences from our new fixed point
theorem and a generalization of the Bolzano intermediate value theorem.
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1. INTRODUCTION AND PRELIMINARIES

Let X be a connected ordered space with two end points. Our main result in
this paper is that a multimap F' : X — X having connected graph has a fixed
point T € X; that is, T € F(Z). We give some consequences of our new theorem
and a generalization of the Bolzano intermediate value theorem. Finally, examples
and remarks are added.

For topological spaces X and Y, a multimap or map F : X — Y is a function
from X into the power set of Y with nonempty values F(x) for x € X and fibers
Fllyy={reX:yeF(x)foryeY.
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A map F: X — Y is said to be upper semicontinuous (u.s.c.) if for each closed
set BCY, theset F~Y(B)={z € X : F(x)N B # 0} is closed in X; lower semi
continuous (1.s.c.) if for each open set B C Y, the set F'~1(B) is open in X; closed
if its graph Gr(F) = {(z,y) : x € X, y € F(z)} is closed in X x Y; and compact
if the closure F(X) of its range F(X) = |J{F(x): z € X} is compact in Y.

A linearly ordered set (X, <) is called an ordered space if it has the order
topology whose subbase consists of all sets of the form {z € X : 2z < s} and
{r € X : x > s} for s € X. Note that an ordered space X is connected iff it
is Dedekind complete (that is, every subset of X having an upper bound has a
supremum) and whenever z < y in X, then z < z < y for some z in X. For

details, see Willard [W].

2. MAIN RESULTS

The following is our main result:

Theorem 1. Let X be a connected ordered space with two end points and F :
X — X a multimap. If F has connected graph, then F has a fized point T € X;
that is, T € F ().

Proof. Let a and b be the end points of X such that a < b. Let
A={(s,t) e X x X :s<t} and B={(s,t) e X x X :s>t}.

Suppose that F' has no fixed point. Then we have x ¢ F(zx) for all x € X and

hence
Gr(F) C AUB.

Choose yp € F(a) and y; € F(b). Then
(a,y0) € ANGr(F) and (b,y1) € BNGr(F).

Since A, B are open and disjoint, this contradicts the connectedness of Gr(F).

This completes our proof.

The class of maps having connected graph is quite large:
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Lemma. (Hiriart-Urruty [H, Theorem 3.2]) Let X,Y be a topological spaces, C' C
X a connected subset, and I' : X — Y be a multimap with connected values on C.
FEither of the next assumptions ensure that the graph of T'|¢ is connected:

(a) T is l.s.c.

(b) T is u.s.c. and compact-valued.

A mapI': X — Y is called a connectivity map if the graph over each connected
subset of X is a connected set. This concept was introduced by Nash for single-
valued case; see Girolo [G].

From Theorem 1 and Lemma we have the following;:

Corollary 2. Let X be a connected ordered space with two end points. Then a

map F: X — X has a fixed point if it satisfies one of the following conditions:
(0) F is a connectivity map.

(i) F is l.s.c. with connected values.

(ii) F' is u.s.c. with compact connected values.

(iii) F has connected values and open fibers.

(iv) F is a closed compact map with connected values.

Proof. (0) Since F' is a connectivity map and X is connected, F' has connected
graph. Therefore, F' has a fixed point by Theorem 1.

(i), (ii) By Lemma, F' is a connectivity map. Therefore, (i) = (0) and (ii) =
(0).

(iii) Since F~1(y) is open for each y € X, F is L.s.c. Indeed, for each open set
A C X, we have

FlA)={zeX:Fla)nA£0}= ] F 'y
yeA

is open. Therefore, (iii) implies (i).

(iv) It is well-known that a closed compact map is u.s.c. with compact values.
Therefore, (iv) implies (ii).

Now the Bolzano intermediate value theorem can be extended as follows:

Theorem 3. Let Z be a topological space, X a connected ordered space with two
end points, and F' : Z — X a map having connected graph. Let x € X be such
that inf F(Z) < x <sup F(Z). Then z € F(Z).

Proof. Since F(Z) is the projection of Gr(F') to X, F(Z) is connected in X.



3. EXAMPLES AND REMARKS

(1) We give some examples of connected ordered space X with two end points.

(a) [0, 1]-spaces; that is, connected spaces admitting a continuous bijection onto
the unit interval; see [R1], [P3].

(b) A (generalized) arc; that is, a continuum which has exactly two non-cut
points. For example, the extended long line L* constructed from the ordinal space
[0, Q] consisting of all ordinal numbers less than or equal to the first uncountable
ordinal €2, together with the order topology. Recall that L* is an arc obtained
from [0, 2] by placing a copy of the interval (0,1) between each ordinal v and its

successor o + 1 and we give L* the order topology; see [SS].

(2) Ricceri [R1] first considered [0, 1]-spaces and, based on a new alternative
principle for multimaps involving [0, 1]-spaces, obtained new mini-max theorems
in full generality and transparence. For further consequences of the principle, see
successive works [R2, R3, C, CB, P3]. For [0, 1]-spaces, Theorem 1 and Corollary
2 in Section 2 reduce to [P3, Theorem|, which was deduced from the results in
[R1].

(3) Theorems and Corollary work for any bounded closed interval X = [a, b] or
for .
X ={(0,0)} U{(z,y) :z € (0,1] and yzsin;} C R2

Even for these spaces, Theorems 1 and 3 seem to be new. In fact, comparisons of

Theorem 1 for [0, 1]-spaces with known results were discussed in [P3].

(4) The connectedness of the graph in Theorems is essential: for example, for
X =[0,1],let F = f: X — X be given by

flx)=1 if 2€]0,1/2] and f(x)=0 if ze(1/2,1].
The connectedness of X in Corollary 2 is essential; for the [0, 1]-space X given by

X ={-1}u(0,1)U{2} CR,
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we give counterexamples of F' = f : X — X violating cases (i)-(iv) as follows:

(i),(i1),(iv) f(=1) =2, f(2) = —1 and f(x) = y/z for z € (0,1).
(iii) f(—=1) =2, f(2) = —1, and f(z) = —1 for z € (0, 1).

(5) Corollary 2 (0) tells us that every connectivity map defined on a connected

space X has connected graph, but not conversely. For example, consider the map

F:[-1,1] — [-1,1] given by
Fx)={ye[-1,1]:9*=(z+1)/2} for ze€[-1,1].

There are some fixed point theorems for connectivity maps; see [G]. It would
be interesting to know whether these theorems can be extended to maps having

connected graphs.

(6) Recently, the author [P1,2,4] has studied the fixed point theory of the better
admissible class 28 of multimaps in topological vector spaces. Now we give an
example of a subclass of 25 as follows:

Let X be a nonempty convex subset of a t.v.s. E and Y a topological space.
A polytope P in X is the convex hull of a nonempty finite subset of X. We define

the “better” admissible class B of multimaps defined on X as follows:

Fe®B(X,Y) <« F: X — Y is a map such that for any polytope P in X
and any continuous map f : F(P) — P, the composition f o (F|p): P — P has
a fixed point.

Let X =Y =[a,b) C Rand F : X — X a multimap. If F' is a connectivity
map, then F € B(X, X). In fact, any polytope P of X is a subinterval of X. For
any continuous map f : F(P) — P, fo (F|p) : P — P has connected graph and
hence, has a fixed point by Theorem 1.
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