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Abstract. Let F : X ( X be a multimap on an arc X or, more generally, a
connected ordered space X with two end points. If F has connected graph, then
F has a fixed point. We deduce several consequences from our new fixed point

theorem and a generalization of the Bolzano intermediate value theorem.
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1. Introduction and preliminaries

Let X be a connected ordered space with two end points. Our main result in

this paper is that a multimap F : X ( X having connected graph has a fixed

point x ∈ X; that is, x ∈ F (x). We give some consequences of our new theorem

and a generalization of the Bolzano intermediate value theorem. Finally, examples

and remarks are added.

For topological spaces X and Y , a multimap or map F : X ( Y is a function

from X into the power set of Y with nonempty values F (x) for x ∈ X and fibers

F−1(y) = {x ∈ X : y ∈ F (x)} for y ∈ Y .
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A map F : X ( Y is said to be upper semicontinuous (u.s.c.) if for each closed

set B ⊂ Y , the set F−1(B) = {x ∈ X : F (x) ∩ B ̸= ∅} is closed in X; lower semi

continuous (l.s.c.) if for each open set B ⊂ Y , the set F−1(B) is open in X; closed

if its graph Gr(F ) = {(x, y) : x ∈ X, y ∈ F (x)} is closed in X × Y ; and compact

if the closure F (X) of its range F (X) =
∪
{F (x) : x ∈ X} is compact in Y .

A linearly ordered set (X,≤) is called an ordered space if it has the order

topology whose subbase consists of all sets of the form {x ∈ X : x < s} and

{x ∈ X : x > s} for s ∈ X. Note that an ordered space X is connected iff it

is Dedekind complete (that is, every subset of X having an upper bound has a

supremum) and whenever x < y in X, then x < z < y for some z in X. For

details, see Willard [W].

2. Main results

The following is our main result:

Theorem 1. Let X be a connected ordered space with two end points and F :

X ( X a multimap. If F has connected graph, then F has a fixed point x ∈ X;

that is, x ∈ F (x).

Proof. Let a and b be the end points of X such that a < b. Let

A = {(s, t) ∈ X ×X : s < t} and B = {(s, t) ∈ X ×X : s > t}.

Suppose that F has no fixed point. Then we have x /∈ F (x) for all x ∈ X and

hence

Gr(F ) ⊂ A ∪B.

Choose y0 ∈ F (a) and y1 ∈ F (b). Then

(a, y0) ∈ A ∩Gr(F ) and (b, y1) ∈ B ∩Gr(F ).

Since A,B are open and disjoint, this contradicts the connectedness of Gr(F ).

This completes our proof.

The class of maps having connected graph is quite large:

2



Lemma. (Hiriart-Urruty [H, Theorem 3.2]) Let X,Y be a topological spaces, C ⊂
X a connected subset, and Γ : X ( Y be a multimap with connected values on C.

Either of the next assumptions ensure that the graph of Γ|C is connected:

(a) Γ is l.s.c.

(b) Γ is u.s.c. and compact-valued.

A map Γ : X ( Y is called a connectivity map if the graph over each connected

subset of X is a connected set. This concept was introduced by Nash for single-

valued case; see Girolo [G].

From Theorem 1 and Lemma we have the following:

Corollary 2. Let X be a connected ordered space with two end points. Then a

map F : X ( X has a fixed point if it satisfies one of the following conditions:

(0) F is a connectivity map.

(i) F is l.s.c. with connected values.

(ii) F is u.s.c. with compact connected values.

(iii) F has connected values and open fibers.

(iv) F is a closed compact map with connected values.

Proof. (0) Since F is a connectivity map and X is connected, F has connected

graph. Therefore, F has a fixed point by Theorem 1.

(i), (ii) By Lemma, F is a connectivity map. Therefore, (i) =⇒ (0) and (ii) =⇒
(0).

(iii) Since F−1(y) is open for each y ∈ X, F is l.s.c. Indeed, for each open set

A ⊂ X, we have

F−1(A) = {x ∈ X : F (x) ∩A ̸= ∅} =
∪
y∈A

F−1(y)

is open. Therefore, (iii) implies (i).

(iv) It is well-known that a closed compact map is u.s.c. with compact values.

Therefore, (iv) implies (ii).

Now the Bolzano intermediate value theorem can be extended as follows:

Theorem 3. Let Z be a topological space, X a connected ordered space with two

end points, and F : Z ( X a map having connected graph. Let x ∈ X be such

that inf F (Z) < x < supF (Z). Then x ∈ F (Z).

Proof. Since F (Z) is the projection of Gr(F ) to X, F (Z) is connected in X.
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3. Examples and remarks

(1) We give some examples of connected ordered space X with two end points.

(a) [0, 1]-spaces; that is, connected spaces admitting a continuous bijection onto

the unit interval; see [R1], [P3].

(b) A (generalized) arc; that is, a continuum which has exactly two non-cut

points. For example, the extended long line L∗ constructed from the ordinal space

[0,Ω] consisting of all ordinal numbers less than or equal to the first uncountable

ordinal Ω, together with the order topology. Recall that L∗ is an arc obtained

from [0,Ω] by placing a copy of the interval (0, 1) between each ordinal α and its

successor α+ 1 and we give L∗ the order topology; see [SS].

(2) Ricceri [R1] first considered [0, 1]-spaces and, based on a new alternative

principle for multimaps involving [0, 1]-spaces, obtained new mini-max theorems

in full generality and transparence. For further consequences of the principle, see

successive works [R2, R3, C, CB, P3]. For [0, 1]-spaces, Theorem 1 and Corollary

2 in Section 2 reduce to [P3, Theorem], which was deduced from the results in

[R1].

(3) Theorems and Corollary work for any bounded closed interval X = [a, b] or

for

X = {(0, 0)} ∪ {(x, y) : x ∈ (0, 1] and y = sin
1

x
} ⊂ R2.

Even for these spaces, Theorems 1 and 3 seem to be new. In fact, comparisons of

Theorem 1 for [0, 1]-spaces with known results were discussed in [P3].

(4) The connectedness of the graph in Theorems is essential: for example, for

X = [0, 1], let F = f : X → X be given by

f(x) = 1 if x ∈ [0, 1/2] and f(x) = 0 if x ∈ (1/2, 1].

The connectedness of X in Corollary 2 is essential; for the [0, 1]-space X given by

X = {−1} ∪ (0, 1) ∪ {2} ⊂ R,
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we give counterexamples of F = f : X → X violating cases (i)-(iv) as follows:

(i),(ii),(iv) f(−1) = 2, f(2) = −1 and f(x) =
√
x for x ∈ (0, 1).

(iii) f(−1) = 2, f(2) = −1, and f(x) = −1 for x ∈ (0, 1).

(5) Corollary 2 (0) tells us that every connectivity map defined on a connected

space X has connected graph, but not conversely. For example, consider the map

F : [−1, 1] ( [−1, 1] given by

F (x) = {y ∈ [−1, 1] : y2 = (x+ 1)/2} for x ∈ [−1, 1].

There are some fixed point theorems for connectivity maps; see [G]. It would

be interesting to know whether these theorems can be extended to maps having

connected graphs.

(6) Recently, the author [P1,2,4] has studied the fixed point theory of the better

admissible class B of multimaps in topological vector spaces. Now we give an

example of a subclass of B as follows:

Let X be a nonempty convex subset of a t.v.s. E and Y a topological space.

A polytope P in X is the convex hull of a nonempty finite subset of X. We define

the “better” admissible class B of multimaps defined on X as follows:

F ∈ B(X,Y ) ⇐⇒ F : X ( Y is a map such that for any polytope P in X

and any continuous map f : F (P ) → P , the composition f ◦ (F |P ) : P ( P has

a fixed point.

Let X = Y = [a, b] ⊂ R and F : X ( X a multimap. If F is a connectivity

map, then F ∈ B(X,X). In fact, any polytope P of X is a subinterval of X. For

any continuous map f : F (P ) → P , f ◦ (F |P ) : P ( P has connected graph and

hence, has a fixed point by Theorem 1.
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