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Abstract. We obtain several generalized variational inequalities from an equilib-

rium theorem due to the first author under more weaker hypothesis and in more
general setting than known ones. Our new results extend, unify and improve many
known Hartman-Stampacchia-Browder type variational inequalities for u.s.c. or

monotone type multimaps. Our proofs are also much simpler than known ones.

1. Introduction

The variational inequalities due to Hartman and Stampacchia [15] and Browder

[4],[5] have been extended by many scholars and applied to many problems in

mathematical sciences. For the literature, see [9].

In a recent work of the first author [22], an equilibrium theorem is obtained

within the frame of the KKM theory. This result extends known variational ineqal-

ities due to Brézis-Nirenberg-Stampacchia, Juberg-Karamardian, Mosco, Allen,

Takahashi, Gwinner, Lassonde, Park, and Ben-El-Mechaiekh. For the literature,

see [22]. On the other hand, more recently, many authors obtained a lot of the

Hartman-Stampacchia-Browder type variational inequalities for upper semicontin-

uous or monotone type multimaps and their applications.
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In the present paper, first of all, we deduce three generalized variational inequal-

ity theorems from the first author’s equilibrium theorem, under weaker hypotheses

and in more general setting than known ones. Our new results extend, unify and

improve the Hartman-Stampacchia-Browder type variational inequalities due to

Hartman-Stampacchia [15], Lions-Stampacchia [18], Stampacchia [29], Mosco [19],

Browder [4],[5], Allen [1], Shih-Tan [26], Park [20],[21], Ding-Tan [12], Yao-Guo

[33], Chang-Zhang [7],[8], and Park-Kum [24].

In the second part, by adopting a generalized concept of monotonicity, we give

simplified and generalized versions of the monotone type variational inequalities

with much simpler proofs. These new results generalize works of Tarafdar-Yuan

[31], Chang et al. [6], Ding-Tan [12], Tan-Yuan [30], and others.

2. Preliminaries

An extended real-valued function g : X → R defined on a topological space X

is lower [resp. upper] semicontinuous (l.s.c.) [resp. u.s.c.] if {x ∈ X : gx > r}

[resp. {x ∈ X : gx < r}] is open for each r ∈ R.

For topological spaces X and Y , a multimap T : X ( Y is a function from X

into the set 2Y of nonempty subsets of Y . We say that T is lower semicontinuous

(l.s.c.) at x0 ∈ X [B] if for each open set G with Tx0 ∩ G ̸= ∅, there exists a

neighborhood U of x0 such that x ∈ U implies Tx ∩ G ̸= ∅; and upper semicon-

tinuous (u.s.c.) at x0 ∈ X [B] if for each open set G with Tx0 ⊂ G, there exists

a neighborhood U of x0 such that x ∈ U implies Tx ⊂ G. We say that T is l.s.c.

[u.s.c.] if it is l.s.c. [u.s.c.] at each point of X.

For a convex subset X of a topological vector space (simply, t.v.s.) E, let k(X)

denote the set of all nonempty compact subsets of X, and kc(X) all nonempty

compact convex subsets.

The following is well-known. See Berge [3].
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Lemma 1. Let X and Y be topological spaces, g : X × Y → R l.s.c., and T :

X → k(Y ) u.s.c. Then the function U : X → [−∞,∞) defined by

U(x) = inf
y∈Tx

g(x, y)

is l.s.c.

Let K denote either the real or complex field.

From Lemma 1 we have the following immediately:

Lemma 2. Let E be a t.v.s. over K, X a nonempty subset of E, F a topological

space, T : X → k(F ) u.s.c., and ⟨ , ⟩ : F ×E → K a function such that, for each

y ∈ E, (z, x) 7→ Re⟨z, x−y⟩ is l.s.c. on F ×X. Then for each y ∈ E, the function

U : X → [−∞,∞) defined by

U(x) = inf
z∈Tx

Re⟨z, x− y⟩

is l.s.c. on X.

Remark. Lemma 2 contains Shih and Tan [28, Lemma 2], Ding and Tan [12,

Lemma 1], Kim and Tan [16, Lemmas 2 and 4], and Chang and Zhang [8, Lemma

3] as particular cases.

Let E and F be vector spaces overK and ⟨ , ⟩ : F×E → K a bilinear functional.

For each x ∈ E, each nonempty subset A of E, and each ε > 0, let

W (x, ε) = {z ∈ F : |⟨z, x⟩| < ε},

U(A, ε) = {z ∈ F : sup
x∈A

|⟨z, x⟩| < ε}.

Let σ(F,E) denote the topology on F generated by the family {W (x, ε) : x ∈

E, ε > 0} as a subbase for the neighborhood system at 0. Similarly, we can define
3



the topology σ(E,F ) on E. If E is a t.v.s., let δ(F,E) denote the topology on F

generated by the family

{U(B, ε) : B is a nonempty compact subset of E and ε > 0}

as a base for the neighborhood system at 0. If E is a t.v.s., let η(F,E) denote the

topology on F generated by the family

{U(B, ε) : B is a nonempty bounded subset of E and ε > 0}

as a base for the neighborhood system at 0.

If F possesses the topology σ(F,E) or δ(F,E), then F becomes a locally convex

t.v.s., not necessarily Hausdorff. If F possesses the topology η(F,E), F becomes

a t.v.s.

Lemma 3. Let E be a t.v.s. over K, F a vector space over K, C a nonempty

subset of E, and ⟨ , ⟩ : F × E → K a bilinear functional. Suppose that for each

z ∈ F, y 7→ ⟨z, y⟩ is continuous on C and that one of the following holds:

(A) F has σ(F,E)-topology

(B) C is compact and F has δ(F,E)-topology.

(C) C is bounded and F has η(F,E)-topology.

If T : C → k(F ) is u.s.c., then for each y ∈ E the function

x 7→ inf
z∈Tx

Re⟨z, x− y⟩

is l.s.c. on C.

Proof. (A) For each y ∈ E, (z, x) 7→ Re⟨z, x−y⟩ is continuous on F×C. Therefore,

by Lemma 2, we have the conclusion.

(B), (C) As in the proof of Kum [17, Lemma B], the pairing ⟨ , ⟩ : F ×C → K

is continuous. Therefore, by Lemma 2, we have the conclusion.
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Remark. If F = E∗, the topological dual of E, then y 7→ ⟨z, y⟩ is continuous

automatically.

Particular Forms. 1. Browder [4, Lemma 1]: E is locally convex, C is compact,

F = E∗, ⟨ , ⟩ is the pairing between E∗ and E, and T is single-valued.

2. Shih and Tan [26, Lemma 1]: Lemma 3(C) for a locally convex t.v.s. E,

F = E∗, and a single-valued continuous map T .

3. Kim and Tan [16, Lemma 2]: Lemma 3(C) with F = E∗.

4. Chang and Zhang [8, Lemma 3] and Zhang [34, Theorem 1] obtained Lemma

3(C) with a proof more lengthy than ours.

The following is well-known:

Lemma 4. (Ky Fan [14]) Let X be a compact Hausdorff space and Y a set. Let

f be a real-valued function on X × Y such that for every y ∈ Y , f(x, y) is l.s.c.

on X. If f is convex on X and concave on Y , then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

For the terminology in Lemma 4, see [14].

A convex space X is a nonempty convex set (in a vector space) equipped with

any topology that induces the Euclidean topology on the convex hulls of its finite

subsets.

A subset B of a topological space X is said to be compactly closed in X if for

every compact set K ⊂ X the set B ∩K is closed in K.

Let ⟨X⟩ denote the set of all nonempty finite subsets of X, and co and

denote the convex hull and closure, resp.

The following equilibrium theorem is the basis of our arguments:
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Theorem 0. Let X be a convex space, f, g : X × Y → [−∞,∞], K a nonempty

compact subset of X, and γ ∈ [−∞,∞]. Suppose that

(0.1) f(x, x) ≤ γ for all x ∈ X;

(0.2) for each y ∈ X, {x ∈ X : g(x, y) > γ} is compactly open;

(0.3) for each x ∈ X, {y ∈ X : f(x, y) > γ} ⊃ co{y ∈ X : g(x, y) > γ}; and
(0.4) for each N ∈ ⟨D⟩, there exists a compact convex subset LN of X containing

N such that for each x ∈ LN\K, g(x, y) > γ for some y ∈ LN .

Then there exists an x ∈ K such that g(x, y) ≤ γ for all y ∈ X.

Note that Theorem 0 follows from [22, Theorem 9] and is slightly different from

[22, Theorem 10]. A far-reaching generalization of Theorem 0 is given in [23,

Theorem 6].

3. Variational inequalities for u.s.c. multimaps

From Theorem 0, we deduce a number of known results on variational inequal-

ities.

Theorem 1. Let X be a convex space, E a vector space over K containing X as

a subset, Z a set, T : X ( Z a multimap, and K a nonempty compact subset of

X. Suppose that

(1.1) ⟨ , ⟩ : Z × E → K is a function such that, for each z ∈ Z, ⟨z, ·⟩ is linear

on X;

(1.2) α : X ×X → R is a function such that, for each x ∈ X, α(x, x) = 0 and

α(x, ·) is concave;

(1.3) for each y ∈ X, the set

{x ∈ X : inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) > 0}

is compactly open; and

(1.4) for each N ∈ ⟨X⟩, there exists an LN ∈ kc(X) containing N such that

x ∈ LN\K implies

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) > 0 for some y ∈ LN .
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Then there exists an x ∈ K such that

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Moreover, the set of all solutions x is a compact subset of K.

Proof. Define p : X ×X → [−∞,∞] by

p(x, y) = inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) for (x, y) ∈ X ×X.

We use Theorem 0 with p = f = g and γ = 0.

(1) p(x, x) = 0 for x ∈ X by (1.1) and (1.2).

(2) For each y ∈ X, {x ∈ X : p(x, y) > 0} is compactly open by (1.3).

(3) For each x ∈ X,

{y ∈ X : p(x, y) > 0} = {y ∈ X : inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) > 0}

is convex since ⟨z, ·⟩ is linear and α(x, ·) is concave by (1.1) and (1.2).

(4) (1.4) =⇒ (0.4).

Therefore, by Theorem 0, we have the first conclusion. Moreover, the set of

all solutions x is in the intersection
∩

y∈X{x ∈ K : p(x, y) ≤ 0} of the compactly

closed subsets of K, and hence compact. This completes our proof.

Particular Forms. 1. Allen [1, Corollary 1]: E is a t.v.s., Z = E∗, T : X → E∗

a function such that x 7→ ⟨Tx, x⟩ is l.s.c. on X, and α(x, y) = f(x)− f(y), where

f : E → (−∞,∞] is a l.s.c. convex function which is finite on X. Note that our

coercivity condition is more general than Allen’s.

2. Yao and Guo [33, Theorems 3.1 and 4.1]: E = Z = Rn and α = 0.

Consequently, all of the existence results of variational problems in [33, Sections

3 and 4] are consequences of Theorem 1.

3. Park and Kum [23, Theorem 2]: Z is a vector space, ⟨ , ⟩ : Z × E → R is a

bilinear functional, and α = 0.

From Theorem 1 and Lemma 2, we obtain the following:
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Theorem 2. Let X be a convex subset of a t.v.s. E over K, F a t.v.s. over K,

T : X → k(F ) u.s.c., and K a nonempty compact subset of X. Suppose that

(2.1) ⟨ , ⟩ : F × E → Φ is a function such that, for each z ∈ F , ⟨z, ·⟩ is linear

on E;

(2.2) α : X × X → R is a function such that, for each x ∈ X, α(x, x) = 0,

α(x, ·) is concave, and α(·, x) is l.s.c. on compact subsets of X;

(2.3) for each y ∈ X, (z, x) 7→ Re⟨z, x− y⟩ is l.s.c. on F ×X; and

(2.4) for each N ∈ ⟨X⟩, there exists an LN ∈ kc(X) containing N such that

x ∈ LN\K implies

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) > 0 for some y ∈ LN .

Then there exists an x ∈ K such that

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Moreover, the set of all solutions x is a compact subset of K.

Proof. We use Theorem 1 with Z = F . Note that (2.1) ⇐⇒ (1.1), (2.4) ⇐⇒ (1.4),

and (2.2) =⇒ (1.2). Since T : X → k(F ) is u.s.c., by Lemma 2, (2.3) implies that,

for each y ∈ X,

x 7→ inf
z∈Tx

Re⟨z, x− y⟩
is l.s.c. on compact subsets of X; and hence

x 7→ inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y)

is l.s.c. on compact subsets of X. Therefore, (1.3) is satisfied. Now the conclusion

follows from Theorem 1.

Particular Forms. 1. Hartman and Stampacchia [15, Lemma 3.1]: X = K is

a compact convex subset of E = F = Rn, ⟨ , ⟩ is the scalar product in Rn, T :

X → Rn a continuous map, and α = 0.

2. Lions and Stampacchia [18], Stampacchia [29], and Mosco [19]: X = K is a

compact convex subset of a real inner product space E, T = 1X , a : E×E → R a

continuous bilinear form on E, and for a v′ ∈ E∗, let α(u,w) = ⟨v′, w − u⟩. Then
there exists a u ∈ K such that

a(u,w − u) ≤ ⟨v′, u− w⟩ for all w ∈ X.

3. Park [21, Corollary 2.1]: T is single-valued.

From Theorem 1 and Lemmas 3 and 4, we obtain the following:
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Theorem 3. Let X be a convex subset of a t.v.s. E over K, K a nonempty

compact subset of X, and F a vector space over K. Suppose that

(3.1) ⟨ , ⟩ : F × E → Φ is a bilinear functional such that, for each z ∈ F ,

x 7→ ⟨z, x⟩ is continuous on each compact subset of X;

(3.2) α : X ×X → R is a function as in (2.2);

(3.3) F has any one of topologies σ(F,E), δ(F,E) and η(F,E); and T : X →
k(F ) is u.s.c. on compact subsets of X; and

(3.4) for each N ∈ ⟨X⟩, there exists an LN ∈ kc(X) containing N such that

x ∈ LN\K implies

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) > 0 for some y ∈ LN .

Then there exists an x ∈ K such that

inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Moreover, the set of solutions x is a compact subset of K. Further, if Tx is

Hausdorff and convex, then there exists a z ∈ Tx such that

Re⟨z, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. We use Theorem 1 with F = Z. Then (3.1) =⇒ (1.1), (3.2) =⇒ (1.2), and

(3.4) ⇐⇒ (1.4). It remains to show that (1.3) holds. For any compact subset C

of X, by Lemma 3, (3.1) and (3.3) imply that, for each y ∈ X, the function

x 7→ inf
z∈Tx

Re⟨z, x− y⟩

is l.s.c. on C. Since α(·, y) is l.s.c. on C by (3.2),

x 7→ inf
z∈Tx

Re⟨z, x− y⟩+ α(x, y)
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is l.s.c. on C. Hence (1.3) is satisfied. Therefore, by Theorem 1, the first and

second part of the conclusion holds.

Suppose that Tx is convex. Define f : Tx×X → R by

f(z, y) = Re⟨z, x− y⟩+ α(x, y) for (z, y) ∈ Tx×X.

Then f is linear in z ∈ Tx and in y ∈ X. Moreover, for each y ∈ X, z 7→ ⟨z, x−y⟩
is continuous as in the proof of Lemma 3, and hence z 7→ f(z, y) is l.s.c. on Tx.

Therefore, by Lemma 4, we have

min
z∈Tx

sup
y∈X

f(z, y) = sup
y∈X

min
z∈Tx

f(z, y).

Since z 7→ supy∈X f(z, y) is l.s.c. on the compact set Tx, being the supremum of

l.s.c. functions, there exists a z ∈ Tx such that

sup
y∈X

f(z, y) = min
z∈Tx

sup
y∈X

f(z, y) = sup
y∈X

min
z∈Tx

f(z, y).

Since the right hand side is ≤ 0 by the first part of the conclusion, we have

supy∈X f(z, y) ≤ 0; that is,

Re⟨z, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

This completes our proof.

Remark. If F = E∗, the topological dual of E, then we do not need to assume

the continuity of y 7→ ⟨z, y⟩ in (3.1).

Particular Forms. 1. Browder [4, Theorem 3], [5, Theorem 2]: E is locally

convex, F = E∗, X = K, T : K → E∗ continuous, and α = 0.

2. Browder [5, Theorem 6]: E is locally convex, F = E∗, X = K, T : K (
kc(E∗) u.s.c., and α = 0.

3. Shih and Tan [26, Theorem 10]: E is locally convex, F = E∗, T : X → E∗

continuous, and α ≡ 0.
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4. Park [20, Theorem 2]: X = K is a compact convex subset of a real t.v.s. E,

F = E∗, T : K → E∗ continuous, and α = 0.

5. Ding and Tan [12, Theorem 4]: Equip F with the δ(F,E)-topology, α(x, y)=

h(x) − h(y) where h : X → R is a l.s.c. convex function, and assumed more

restrictive coercivity condition.

6. Ding [11, Theorem 2.2]: X is equipped with the σ(E,F )-topology, F with

the σ(F,E)-topology, and assumes stronger coercivity.

7. Park [21, Theorem 3]: E is locally convex, F = E∗, T is single-valued, and

α = 0.

8. Chang and Zhang [8, Corollary 1]: X = K and α(x, y) = h(x)− h(y), where

h : X → R is a l.s.c. convex function.

9. Zhang [34, Theorem 6]: F has the δ(F,E)-topology, α(x, y) = h(x) − h(y)

as above, and the coercivity is stronger than ours.

10. Park and Kum [24, Theorem 1]: F = E∗ with δ(F,E)-topology, X = K,

and α = 0.

4. Variational inequalities for generalized monotone multimaps

Let E and F are t.v.s. and ⟨ , ⟩ : F × E → K be a pairing. For any X ⊂ E,

a multimap T : X ( F is said to be

(i) monotone if for each x, y ∈ X, u ∈ Tx, and v ∈ Ty,

Re⟨u− v, x− y⟩ ≥ 0;

(ii) semimonotone [2] if for each x, y ∈ X, u ∈ Tx, and v ∈ Ty,

inf
u∈Tx

Re⟨u, x− y⟩ ≥ inf
v∈Ty

Re⟨v, x− y⟩;

(iii) quasimonotone [12] if for each x, y ∈ X,

inf
v∈Ty

Re⟨v, x− y⟩ > 0 implies inf
u∈Tx

Re⟨u, x− y⟩ > 0.
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The concepts of semimononotonicity or quasimonotonicity are used in the works

of Bae et al. [2], Cottle and Yao [10], Yao [32], and Ding-Tarafdar [13].

We now introduce the following: T is said to be

(iv) demimonotone if for each x, y ∈ X,

sup
v∈Ty

Re⟨v, x− y⟩ > 0 implies inf
u∈Tx

Re⟨u, x− y⟩ > 0.

Note that this kind of monotonicity is used by Zhang [34, Theorems 4,7, and 8]

and extends the monotonicity (i).

In this section, from Theorem 0, we deduce generalized and simplified versions

of the main results of [6] and many other authors with much simpler proofs.

The following existence result on solutions of variational inequalities for demi-

monotone multimaps is important:

Theorem 4. Let X be a convex subset of a t.v.s. E over K, K a nonempty

compact subset of X, F a vector space over K, and ⟨ , ⟩ : F × E → K a bilinear

functional such that for each f ∈ F , the function x 7→ ⟨f, x⟩ is l.s.c. on X.

Suppose that

(4.1) T : X ( F is demimonotone;

(4.2) α : X ×X → R is such that for each y ∈ X, α(·, y) is l.s.c. on compact

subsets of X;

(4.3) for each N ∈ ⟨X⟩, there exists a compact convex subset LN of X containing

N such that for each x ∈ LN\K,

sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y) > 0 for some y ∈ LN .

Then there exists an x ∈ K such that

sup
v∈Ty

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.
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Proof. For x, y ∈ X, let

g(x, y) := sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y),

f(x, y) := inf
u∈Tx

Re⟨u, x− y⟩+ α(x, y),

and use Theorem 0 with γ = 0. Note that (0.1) holds by (4.2).

Since T is demimonotone, we have g(x, y) > 0 implies f(x, y) > 0 for each

x, y ∈ X. Note that {y ∈ X : f(x, y) > 0} is convex. In fact, if f(x, y1) > 0 and

f(x, y2) > 0, by the bilinearity of ⟨ , ⟩ and (4.2), we can easily check that

f(x, ty1 + (1− x)y2) ≥ tf(x, y1) + (1− t)f(x, y2) > 0

for 0 < t < 1. Hence, we have

{y ∈ X : f(x, y) > 0} ⊃ co{y ∈ X : g(x, y) > 0}

for each x ∈ X. This shows (0.3).

Note that for each z ∈ F, x 7→ ⟨z, x⟩ is l.s.c. on X by asssumption, and hence

x 7→ supv∈Ty⟨v, x − y⟩ is l.s.c. for each y ∈ X, being the supremum of l.s.c.

functions. Since α(·, y) is l.s.c. on compact subsets of X by (4.2), x 7→ g(x, y) is

l.s.c. on compact subsets of X for each y ∈ X. Hence (0.2) holds.

Moreover, (4.3) implies (0.4). Therefore, by Theorem 0, there exists an x ∈ K

such that supy∈X g(x, y) ≤ 0; that is,

sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

This completes our proof.

Remark. For F = E∗, a monotone map T , and α(x, y) = h(x) − h(y), where

h : X → R is a convex l.s.c. function, Theorem 4 reduces to Tarafdar and Yuan

[31, Theorem 3.1], where the coercivity is stronger than ours.
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Lemma 5. Let E be a t.v.s. over K, F a vector space over K, and ⟨ , ⟩ : F ×E →
K a bilinear functional. Then for each z ∈ F , y 7→ ⟨z, y⟩ is continuous on E with

the σ(E,F )-topology.

For the proof, see [6, p.499].

From Theorem 4 and Lemma 5, we immediately obtain the following:

Theorem 4′. Let X be a convex subset of a t.v.s. E over K, F a vector space

over K with the σ(F,E)-topology, and K a nonempty σ(E,F )-compact subset of

X w.r.t. a bilinear functional ⟨ , ⟩ : F × E → R. Suppose that

(4.1)′ T : X ( F is demimonotone;

(4.2)′ α : X × X → R is such that for each x ∈ X, α(x, x) = 0 and α(x, ·) is

concave and for each y ∈ X, α(·, y) is l.s.c. on compact subsets of X with

the σ(E,F )-topology; and

(4.3)′ for each N ∈ ⟨X⟩, there exists a σ(E,F )-compact convex subset LN of X

containing N such that for each x ∈ LN\K,

sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y) > 0 for some y ∈ LN .

Then there exists an x ∈ K such that

sup
v∈Ty

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Lemma 6. Let X be a convex subset of a t.v.s. E over K, and F a vector space

over K with the σ(F,E)-topology w.r.t. a bilinear functional ⟨ , ⟩ : F × E → K.

Suppose that

(1) T : X ( F is u.s.c. on each line segment of X; and

(2) α : X ×X → R is a real function such that for each x ∈ X, α(x, x) = 0

and α(x, ·) is concave.
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Then for each x ∈ X, it follows from

sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X

that

inf
u∈Tx

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. Just follow the proof of Chang et al. [6, Lemma 3].

Particular Forms. 1. Shih and Tan [27, Lemma 2]: E is a Banach space,

F = E∗, α = 0, and Tx is weak∗ compact for each x ∈ X.

2. Tan and Yuan [30, Lemmas 3 and 8], Tarafdar and Yuan [31, Lemma 2.7]:

F = E∗, α(x, y) = h(x) − h(y) where h : X → R is a convex function, and Tx is

σ(E∗, E)-compact for each x ∈ X.

3. Chang et al. [6, Lemma 3]: α(x, y) = h(x) − h(y), where h : X → R is a

convex function.

Lemma 6′. Let X,E, F , and α be the same as in Lemma 6. Suppose that

(1)′ T : X ( F is l.s.c. on each line segment of X.

Then for each x ∈ X, it follows from

sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X

that

sup
u∈Tx

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. Just follow the proof of Ding and Tan [12, Lemma 3].

Particular Forms. 1. Ding and Tan [12, Lemma 3]: α(x, y) = h(x)−h(y), where

h : X → R is a convex function..

2. Tan and Yuan [30, Lemma 2]: E is a Banach space, F = E∗, and α(x, y) =

h(x)− h(y) as above.

15



Theorem 5. Under the hypothesis of Theorem 4 or 4′, assume that

(5.1) T is u.s.c. on each line segement of X to the σ(F,E)-topology on F .

Then there exists an x ∈ K such that

inf
u∈Tx

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Furthermore, if Tx is Hausdorff compact convex, then there exists a u ∈ Tx such

that

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. From Theorem 4 or 4′ and Lemma 6, the first conclusion follows. For the

last part, we can follow the proof of Theorem 3.

Particular Forms. 1. Stampacchia [29, Theorems 2.3 and 2.4]: E is a reflexive

Banach space, X = K, F = E∗, α = 0, and T is single-valued and monotone.

2. Shih and Tan [27, Theorems 1 and 2]: E is a reflexive Banach space, F = E∗,

α = 0, and T is monotone with stronger coercivety.

3. Chang et al. [6, Theorem 2]: E is locally convex, α(x, y) = h(x) − h(y) for

a function h : X → R, T is monotone, and the coercivity is stronger than ours.

4. Tarafdar and Yuan [31, Theorem 3.4(II)]: F = E∗, α(x, y) = h(x)− h(y) as

above, T is monotone with stronger coercivity.

Theorem 5′. Under the hypothesis of Theorem 4 or 4′, assume that

(5.1)′ T is l.s.c. on each line segment of X to the σ(F,E)-topology on F .

Then there exists an x ∈ K such that

sup
u∈Tx

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. From Theorem 4 or 4′ and Lemma 6′, the conclusion follows.
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Particular Forms. 1. Shih and Tan [26, Theorems 6 and 7]: F = E∗, α = 0,

and T is monotone with stronger coercivity.

2. Ding and Tan [12, Theorems 2 and 3]: α(x, y) = h(x) − h(y) for a function

h : X → R and assume stronger coercivity.

3. Ding [11, Theorem 2.1]: Under stronger coercivity and additional assump-

tion.

4. Zhang [34, Theorems 4 and 5]: α(x, y) = h(x) − h(y) under stronger coer-

civity.

5. Tarafdar and Yuan [31, Theorem 3.4(I)]: F = E∗, α(x, y) = h(x)−h(y), and

assume stronger coercivity.

Remarks. 1. There are a lot of particular forms of (reflexive) Banach space

versions of Theorems 4, 4′, 5, and 5′. See [7],[31],[33] and others. Those results

can be improved by following our method.

2. There are a lot of applications of Theorems 4, 4′, 5 and 5′. See [7],[15],[18],[19],

[29],[31],[33] and others. Some of them also can be improved using our results.

Finally, from Theorem 4 or 4′, we have the following:

Theorem 6. If T is monotone in Theorem 5, then there exists an x ∈ X such

that

sup
y∈X

[ sup
v∈Ty

Re⟨v, x− y⟩+ α(x, y)] ≤ sup
y∈X

[ inf
u∈Tx

Re⟨u, x− y⟩+ α(x, y)] ≤ 0.

Further, if Tx is Hausdorff compact convex, then there exists a u ∈ Tx such that

Re⟨u, x− y⟩+ α(x, y) ≤ 0 for all y ∈ X.

Proof. Since T is monotone, for all x, y ∈ X, u ∈ Tx and v ∈ Ty, we have

Re⟨v, x− y⟩ ≤ Re⟨u, x− y⟩

and hence we have

g(x, y) ≤ f(x, y)

in the proof of Theorem 4, which readily implies the conclusion by Theorem 5.

Remark. Under the hypothesis of Theorem 4, a very particular form of Theorem

6 is due to Chang et al. [6, Theorem 1] and Chang and Zhang [7, Theorem 4.1].
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