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Abstract. For hyperconvex metric spaces, we obtain generalized

KKM theorems, the matching theorem for open covers, the Fan-
Browder type coincidence theorems, the Schauder type and other

fixed point theorems.

1. Introduction

The notion of hyperconvex spaces was introduced by Aronszajn and
Panitchpakdi [1] in 1956. In 1979, independently Sine [21] and Soardi
[24] proved the fixed point property for nonexpansive maps on bounded
hyperconvex spaces. Since then many interesting works have appeared
on the study of hyperconvex spaces concentrated to mainly the rela-
tionship with nonexpansive maps. For example, see [2, 3, 8-15, 22,
23].

Recently, Khamsi [11] established the Knaster-Kuratowski-Mazurki-
ewicz theorem (in short, KKM theorem) for hyperconvex spaces and
applied it to prove an analogue of Ky Fan’s best approximation theorem
extending the Brouwer and the Schauder fixed point theorems. Moti-
vated by [11], the present author [18] applied Khamsi’s KKM theorem
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to obtain a Ky Fan type matching theorem for open covers, a coinci-
dence theorem, a Fan-Browder type fixed point theorem, a Brouwer-
Schauder-Rothe type fixed point theorem, and other results on mainly
compact hyperconvex spaces.

On the other hand, Horvath [4-8] initiated study of his C-spaces,
which are meaningful generalizations of convex spaces or convex sub-
sets of topological vector spaces. Moreover, in [8], he found that hyper-
convex spaces are particular type of C-spaces. Recently, C-spaces are
generalized to G-convex spaces by the present author [19, 20] and foun-
dations of the KKM theory were established for convex spaces in [17]
and for G-convex spaces in [20]. Therefore, we can apply the results in
[20] to hyperconvex spaces.

In the present paper, we continue the study of hyperconvex spaces in
[18] and obtain noncompact versions of the KKM theorem, the match-
ing theorem for open covers, the Fan-Browder type coincidence theo-
rems and other results. Especially, we obtain the Schauder type fixed
point theorems for compact maps on hyperconvex spaces and a gener-
alization of a theorem due to Kirk [14] on the location of fixed point
sets.

Our arguments are based on the KKM theorem due to Khamsi [11]
and a lemma due to Espinola-Garcia [3] on the invariance of the mea-
sure of noncompactness under passage to the hyperconvex hull.

2. Preliminaries

A metric space (H,d) is said to be hyperconvex if

⋂

α

B(xα, rα) 6= ∅

for any collection {B(xα, rα)} of closed balls in H for which d(xα, xβ) ≤
rα + rβ.

For any nonempty bounded subset A of H, its convex hull coA is
defined by

coA =
⋂

{B : B is a closed ball containing A}.
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Let A(H) = {A ⊂ H : A = coA}; that is, A ∈ A(H) iff A is an
intersection of balls. In this case we will say A is an admissible subset
of H; see [11].

For any X ⊂ H, a multimap (or a map) G : X ( H is called a
KKM-map if

co{x1, . . . , xn} ⊂
n⋃

i=1

G(xi)

for any x1, . . . , xn ∈ X.
The following KKM-theorem is due to Khamsi [11, Theorem 4]:

Theorem 0. Let H be a hyperconvex space and X ⊂ H a subset.
Let G : X ( H be a KKM map such that G(x) is closed for any x ∈ X
and G(x0) is compact for some x0 ∈ X. Then we have

⋂

x∈X

G(x) 6= ∅.

For a map G : X ( Y , we denote x ∈ G−1(y) iff y ∈ G(x) where
x ∈ X and y ∈ Y . Let C(X,Y ) denote the class of single-valued
continuous maps f : X → Y .

Let µ be either the Kuratowski (set) or Hausdorff (ball) measure on
the family of bounded subset of a metric space H.

The following is known [3, Lemma 5 and Corollary]:

Lemma 1. Let H be a hyperconvex space and Y a subset of H.
Then there exists Z ⊂ H such that Y ⊂ Z ⊂ H, Z is isometric to εY ,
and µ(Y ) = µ(Z).

Here, εY denotes the hyperconvex hull of Y introduced by Isbell [9];
see also [3]. Note that Z is a hyperconvex subset of H.

Let 〈X〉 denote the class of nonempty finite subsets of a set X.
In view of Lemma 1 or [9, Proposition 2.11], for any N ∈ 〈H〉 and

a compact subset L of a hyperconvex space H, there is a compact
hyperconvex subset LN of H isometric to ε(L ∪ N).

3. General KKM theorems

In this section, we deduce useful generalized forms of the KKM type
theorems.

From Theorem 0, we have the following:
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Theorem 1. Let H be a hyperconvex space, X ⊂ H, and G : X (
H a KKM map with compactly closed values. Then for every compact
hyperconvex subset H0 ⊂ H, we have

H0 ∩
⋂

{G(x) : x ∈ H0 ∩ X} 6= ∅.

Proof. Define G0(x) = G(x) ∩ H0 for x ∈ H0 ∩ X. Then G0 :
H0 ∩ X ( H0 is well-defined. Consider (H0,H0 ∩ X,G0) instead of
(H,X,G) in Theorem 0. Then all of the requirements are satisfied.
Therefore, we have

⋂
{G0(x) : x ∈ H0 ∩ X} = H0 ∩ {G(x) : x ∈ H0 ∩ X} 6= ∅.

This completes our proof.

From Theorem 1, we have the following:

Theorem 2. Let H be a hyperconvex space, X ⊂ H, Y a topo-
logical space, t ∈ C(H,Y ), G : X ( Y a map, and K a nonempty
compact subset of Y . Suppose that

(2.1) for each x ∈ X, G(x) is compactly closed;
(2.2) t−1G : X ( H is a KKM map; and
(2.3) for any N ∈ 〈X〉, there exists a compact hyperconvex subset

LN ⊂ H containing N such that t(LN ) ∩
⋂
{G(x) : x ∈ LN ∩

X} ⊂ K.

Then we have

t(H) ∩ K ∩
⋂

{G(x) : x ∈ X} 6= ∅.

Proof. Suppose that the conclusion does not hold. Since t(H) ∩ K
is compact and contained in

⋃
{Y \G(x) : x ∈ X}, by (2.1), there exists

an N ∈ 〈X〉 such that

t(H) ∩ K ⊂
⋃

x∈N

(Y \G(x)).
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For the LN ⊂ H in (2.3), this implies

LN ∩
⋂

x∈LN∩X

t−1G(x) ∩ t−1(K) = ∅.

However, by (2.3), we have

LN ∩
⋂

x∈LN∩X

t−1G(x) ⊂ t−1(K).

Therefore, we have

LN ∩
⋂

x∈LN∩X

t−1G(x) = ∅,

which contradicts Theorem 1. This completes our proof.

Remark. For H = Y , t = 1H the identity map of H, and K =
G(x0) for some x0 ∈ X, Theorem 2 reduces to Theorem 0. Therefore,
in Theorem 0, G may have compactly closed values.

4. Matching and coincidence theorems

Theorem 2 can be restated in its contrapositive form and in terms
of the complement Sx of Gx in Y as follows:

Theorem 3. Let H be a hyperconvex space, X ⊂ H, Y a topo-
logical space, t ∈ C(H,Y ), S : X ( Y a map, and K a nonempty
compact subset of Y . Suppose that

(3.1) for each x ∈ X, Sx is compactly open;

(3.2) t(H) ∩ K ⊂ S(X); and
(3.3) for each N ∈ 〈X〉, there exists a compact hyperconvex subset

LN ⊂ H containing N such that t(LN )\K ⊂ S(LN ∩ X).

Then there exist an M ∈ 〈X〉 and an x0 ∈ co M such that t(x0) ∈⋂
x∈M S(x); that is, t(co M) ∩

⋂
x∈M S(x) 6= ∅.
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Remark. Theorem 3 is a particular form of Ky Fan’s matching the-
orem for open covers in the KKM theory of generalized convex spaces;
see [16, 17, 19, 20].

For K = Y , Theorem 3 reduces to [18, Theorem 1].
From Theorem 3, we have the following Fan-Browder type coinci-

dence theorem:

Theorem 4. Let H,X, Y, t, and K be the same as in Theorem 3.
Suppose that two multimaps S : X ( Y and T : H ( Y satisfy the
following:

(4.1) for each x ∈ X, S(x) ⊂ T (x) and S(x) is compactly open;
(4.2) for each y ∈ t(H), T−1(y) is admissible;

(4.3) t(H) ∩ K ⊂ S(X); and
(4.4) for each N ∈ 〈X〉, we have an LN as in (3.3) such that t(LN )\K

⊂ S(LN ∩ X).
Then there exists an x0 ∈ H such that t(x0) ∈ T (x0).

Proof. Since (4.1), (4.3), and (4.4) imply (3.1)-(3.3), by Theorem
3, there exist an M ∈ 〈X〉 and an x0 ∈ coM such that t(x0) ∈⋂

x∈M S(x). Therefore, t(x0) ∈
⋂

x∈M T (x) by (4.1). Since y = t(x0) ∈
t(H) and x ∈ T−1(y) for all x ∈ M , by (4.2), we have coM ⊂ T−1(y).
In particular, x0 ∈ T−1(y); that is, y ∈ T (x0). This completes our
proof.

Remark. For K = Y , Theorem 4 reduces to [18, Theorem 2] and,
for H = X = Y = K, t = 1H, and S(x) = IntT (x), Theorem 4 reduces
to [18, Theorem 3].

So far, from Theorem 0, we deduced Theorems 1-4, which are non-
compact versions of corresponding results in [6, 13]. For far-reaching
generalized forms of Theorems 0-4 for G-convex spaces, see [15].

5. Fixed points of nonself maps

As another application of Theorem 3, we obtain the following Fan
type best approximation theorem for hyperconvex spaces:
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Theorem 5. Let H be a hyperconvex space, X ∈ A(H), and f ∈
C(X,H). Suppose that there exists a nonempty compact subset K of
X such that

(0) for each N ∈ 〈X〉, there exists a compact hyperconvex sub-
set LN ⊂ X containing N such that for each x ∈ LN\K,
d(y, f(x)) < d(x, f(x)) holds for some y ∈ LN .

Then either f has a fixed point x0 ∈ K; or there exists an x0 ∈
K ∩ Bd X such that

0 < d(x0, f(x0)) ≤ d(y, f(x0)) for all y ∈ X.

Proof. Suppose that for each x ∈ K, there exists a y ∈ X such that

d(x, f(x)) > d(y, f(x)).

Define S : X ( X by

S(x) := {y ∈ X : d(x, f(y)) < d(y, f(y))}
for x ∈ X. Since f is continuous, S(x) is open in X. Moreover, for
each x ∈ K, we have a y ∈ X such that x ∈ S(y). Therefore, (3.1) and
(3.2) are satisfied. Note that condition (0) satisfies (3.3) with t = 1X .
Therefore, by Theorem 3 with H = X = Y and t = 1X , there exist
an M ∈ 〈X〉 and an x∗ ∈ coM such that x∗ ∈

⋂
x∈M S(x); that is,

d(xi, f(x∗)) < d(x∗, f(x∗)) for each xi ∈ M := {x1, . . . , xn} ∈ 〈X〉.
Let ε > 0 such that d(xi, f(x∗)) ≤ d(x∗, f(x∗)) − ε. Then

xi ∈ B(f(x∗), d(x∗ , f(x∗)) − ε).

Since the closed ball is admissible and contains M , we have

x∗ ∈ coM ⊂ B(f(x∗), d(x∗ , f(x∗)) − ε).

This is a contradiction. Hence there exists an x0 ∈ K such that
f(x0, f(x0)) ≤ d(y, f(x0)) for all y ∈ X.

Suppose that x0 ∈ IntX. Then there exists an r > 0 such that

B(x0, r) ⊂ X and r < d(x0, f(x0)) ≤ d(y, f(x0)) for all y ∈ B(x0, r).

Then there is a y0 ∈ B(x0, r) ∩ B(f(x0), d(x0, f(x0)) − r) by the hy-
perconvexity of H. Hence,

d(y0, f(x0)) ≤ d(x0, f(x0)) − r < d(x0, f(x0)),

which is a contradiction. Therefore, x0 ∈ BdX.
This completes our proof.



8 Sehie Park

Remark. For X = K, condition (0) holds trivially and Theorem 5
reduces to Khamsi [11, Lemma].

From Theorem 5, we have the following fixed point theorem:

Theorem 6. Under the hypothesis of Theorem 5, f has a fixed

point if one of the following conditions holds for all x ∈ K ∩BdX such

that x 6= f(x):
(i) There exists a y ∈ X such that

d(x, f(x)) > d(y, f(x)).

(ii) There exists a α ∈ (0, 1) such that

X ∩ B(f(x), αd(x, f(x)) 6= ∅.

(iii) f(x) ∈ X.

Proof. (i) Suppose that f has no fixed point in K. Then by Theorem
5, there exists an x0 ∈ K ∩ Bd X such that

0 < d(x0, f(x0)) ≤ d(y, f(x0)) for all y ∈ X.

This contradicts condition (i).
(ii) For any x ∈ K ∩BdX with x 6= f(x), there exists a y ∈ X such

that
y ∈ X ∩ B(f(x), αd(x, f (x)).

Then
d(y, f(x)) ≤ αd(x, f(x)) < d(x, f(x)).

Therefore (ii) implies (i).
(iii) Clearly (iii) implies (i).
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Remark. For X = K, Theorem 6 reduces to [18, Theorem 5] in-
cluding Khamsi [11, Theorem 6] and Espinola-Garcia [3, Lemma 2].
Note that Theorem 6(iii) can be regarded as a far-reaching generaliza-
tion of the Brouwer, Schauder, or Rothe type fixed point theorems for
hyperconvex spaces.

6. The Schauder type fixed point theorem

As another application of Theorem 4, we have the following fixed
point result on compact maps:

Lemma 2. Let H be a hyperconvex space, X ⊂ H, K a nonempty
compact subset of H, and t ∈ C(H,K). Suppose that, for each δ > 0,
there exist two multimaps S : X ( H and T : H ( H satisfying
(4.1)-(4.3) of Theorem 4 and d(x, y) < δ for all x ∈ H and y ∈ T (x).
Then t has a fixed point.

Proof. Note that t(H) ⊂ K implies condition (4.4) of Theorem 4.
Then, by Theorem 4, for any δ > 0, there exists an x0 ∈ H such that
t(x0) ∈ T (x0) and d(x0, t(x0)) < δ. Therefore, for any δ > 0, t has an
δ-fixed point. Since t(H) ⊂ K is compact, t must have a fixed point.

From Lemma 2, we deduce the following Schauder fixed point the-
orem for compact maps defined on hyperconvex spaces:

Theorem 7. Let H be a hyperconvex space and f ∈ C(H,H). If
f is compact, then f has a fixed point.

Proof. For any δ > 0, define two maps S, T : H ( H by

S(x) = {y ∈ H : d(x, y) < δ/2} and T (x) = {y ∈ H : d(x, y) ≤ δ/2}

for x ∈ H. Let K = f(H). Then (4.1) holds clearly. For each y ∈ H,
T−(y) = {x ∈ H : d(x, y) ≤ δ/2} = B(y, δ/2) is admissible. Hence
(4.2) holds. Clearly (4.3) and (4.4) are satisfied with t = f . Moreover,
d(x, y) < δ for all x ∈ H and y ∈ T (x). Therefore, by Lemma 2, f has
a fixed point.
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Note that Theorem 7 can also be derived from Theorem 6(iii) as
follows:

Another Proof. Since K = f(H) is compact, by Lemma 1 or Isbell
[9, Proposition 2.11], there is a compact hyperconvex subset X of H

containing K such that X is isometric to εK. Then, by Theorem 6(iii)
with X = K, f |X ∈ C(X,X) has a fixed point.

Remark. For the case H is bounded, Espinola-Garcia [3, Theorem]
obtained a generalization of Theorem 7 for a µ-condensing map f .

Finally, we have a result closely related to Theorem 7:

Theorem 8. Let H be a hyperconvex space and f ∈ C(H,H) com-

pact. Let H ′ be a compact hyperconvex subset of H containing f(H)
such taht H ′ is isometric to ε(f(H)). Let T be the class of nonempty

admissible subsets of H ′ endowed with the Hausdorff metric. Define a

map f : T → T by setting

f (X) = co f(X) for X ∈ T .

Set D0 = H ′, let Dn = f (Dn−1) = f
n
(H ′), and suppose D =

⋂∞
n=0 Dn.

Then f (D) = D, and D = limn→∞ Dn, where the limit is taken rel-

ative to the Hausdorff metric on T . In particular, if f(x) = x then

x ∈ D.

Remark. The existence of H ′ is a consequence of Lemma 1. Kirk
[14, Theorem 1] obtained Theorem 8 for the case H itself is compact,
from which Theorem 8 clearly follows.

Note that our Schauder Theorem 7 provides the nonempty fixed
point set of a compact map f ∈ C(H,H) and Theorem 8 its approxi-
mate location.

Kirk [14] also noted that Theorem 8 can be thought of as an abstract
formulation of a well known fact in interval analysis.
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