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1. INTRODUCTION

In our previous work [P4], most of known generalizations of the Fan or Prolla

type best approximation theorems for single-valued maps are improved, extended,

and unified. In the present paper, we mainly consider set-valued generalizations

of best approximation theorems.

Usually such results are obtained for Kakutani maps; that is, upper semicontin-

uous multifunctions with compact convex values, defined on a convex subset of a

locally convex Hausdorff topological vector space. However, in this paper, we deal

with much larger class of multifunctions containing acyclic maps which are upper

semicontinuous multifunctions with compact acyclic values, defined on a convex

subset of a topological vector space having sufficiently many linear functionals.

Our arguments are based on new types of fixed point theorems recently due to the

author [P1,2].

Consequently, earlier works of Fan [F], Reich [R1,2], Prolla [Pr], Sehgal and

Singh [SS], Sehgal, Singh, and Gastl [SSG], Carbone and Conti [CC], Ding and

Tan [DT], Park, Singh, and Watson [PSW], Park [P3], and others are properly

extended and improved.

The author was partially supported by Ministry of Education, 1994, Project No.BSRI-94-
1413.
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2. PRELIMINARIES

A multifunction or set-valued map (simply, map) F : X → 2Y is a function with

nonempty set-values Fx ⊂ Y for each x ∈ X. The set {(x, y) : y ∈ Fx} is called

either the graph of F or, simply, F . So (x, y) ∈ F if and only if y ∈ Fx. For any

A ⊂ X, let F (A) =
∪
{Fx : x ∈ A}. For any B ⊂ Y , let F−1(B) = {x ∈ X :

Fx ∩ B ̸= ∅}. If B is a singleton {y} in Y , then F−1(B) is called a fiber denoted

F−1y.

For topological spaces X and Y , a map F : X → 2Y is upper semicontinuous

(u.s.c.) if, for each closed set B ⊂ Y , F−1(B) is closed in X; lower semicontinuous

(l.s.c.) if, for each open set B ⊂ Y , F−1(B) is open in X; continuous if F is both

u.s.c. and l.s.c.; and compact if F (X) is contained in a compact subset of Y . A

set K ⊂ X is said to be σ-compact if K is a countable union of compact sets. A

nonempty topological space is acyclic if all of its reduced Čech homology groups

over rationals vanish.

A convex space C is a nonempty convex set with any topology that induces the

Euclidean topology on the convex hulls of its finite subsets. Such convex hulls are

called polytopes.

Given a class L of maps, L(X,Y ) denotes the set of all maps F : X → 2Y

belonging to L, and Lc the set of all finite composites of maps in L.
A class A of maps is one satisfying the following:

(i) A contains the class C of (single-valued) continuous functions;

(ii) each F ∈ Ac is u.s.c. and compact-valued; and

(iii) for any polytope P , each F ∈ Ac(P, P ) has a fixed point.

Examples of A are C, the Kakutani maps K (with convex values), the acyclic maps

V (with acyclic values), the Aronszajn maps M (with Rδ values) [Gr], the O’Neill

maps N (with values consisting of one or m acyclic components, where m is fixed)

[Gr], the approachable maps A in topological vector spaces [BD 1-3], admissible

maps in the sense of Górniewicz [G], permissible maps of Dzedzej [D], and others.

Moreover, we define
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F ∈ Aσ
c (X,Y ) ⇐⇒ for any σ-compact subset K of X, there is a Γ ∈ Ac(X,Y )

such that Γx ⊂ Fx for each x ∈ K.

F ∈ Aκ
c (X,Y ) ⇐⇒ for any compact subset K of X, there is a Γ ∈ Ac(X,Y )

such that Γx ⊂ Fx for each x ∈ K.

Note that A ⊂ Ac ⊂ Aσ
c ⊂ Aκ

c . Examples of Aσ
c are Kσ

c due to Lassonde [L] and

Vσ
c due to Park, Singh, and Watson [PSW]. Note that Kσ

c contains classes K, R,

and T in [L].

In this paper, we assume that V ⊂ A; that is, a class Aκ
c always contains Vκ

c .

Let E = (E, τ) be a topological vector approximations to y ∈ E from C by

Qp(y) = {x ∈ C : p(y − x) = dp(y, C)}. The multifunction Qp : E → 2C thus

defined is called the metric projection onto C if Qp(y) ̸= ∅ for each y ∈ E; that

is, C is proximinal (with respect to p). The set C is said to be approximatively

compact (with respect to p) if for each y ∈ E, every net {xα : α ∈ Λ} ⊂ C such

that p(y − xα) → dp(y, C) has a subnet that converges to an element of C.

The following is well-known [R1]:

Lemma 3. Let C be a nonempty convex subset of a Hausdorff topological vector

space E and p ∈ S(E). If C is approximatively p-compact, then Qp ∈ K(E,C).

Note that every compact subset is approximatively compact and that every

closed convex subset of a uniformly convex Banach space is approximatively norm-

compact.

In (E, τ), let Bd, Int, and denote the boundary, interior, and closure, re-

spectively, with respect to τ .

The inward and outward sets of X ⊂ E at x ∈ E, IX(x) and OX(x), are defined

as follows:

IX(x) = {x+ r(u− x) : u ∈ X, r > 0},

OX(x) = {x+ r(u− x) : u ∈ X, r < 0}.
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Let E be a vector space, p a seminorm on E, and C a nonempty convex subset

of E. A function g : C → E is said to be

(i) almost p-affine if

p(g(rx+ (1− r)y)− u) ≤ rp(gx− u) + (1− r)p(gy − u);

(ii) almost p-quasiconvex if

p(g(rx+ (1− r)y)− u) ≤ max{p(gx− u), p(gy − u)},

for x, y ∈ C, u ∈ E, and r ∈ (0, 1).

For a topological space X, a function f : X → R is said to be lower semicon-

tinuous (l.s.c.) if {x ∈ X : fx > r} is open for each r ∈ R.
The following is well known:

Lemma 4. Let X and Y be topological spaces, h : X × Y → R l.s.c., and F :

X → 2Y a compact-valued u.s.c. multifunction. Then x 7→ inf{h(x, y) : y ∈ Fx}
is l.s.c. on X.

3. MAIN RESULTS

The following is a main result in this paper:

Theorem 1. Let (C, σ) be a convex space, E = (E, τ) a Hausdorff topological

vector space containing C as a subset, F : (C, σ) → 2E, p ∈ S(E,w), Qp : E →
2(C,τ) the metric projection, and g ∈ C((C, τ), E) such that C ⊂ g(C). Suppose

that either

(I) E∗ separates points of E, (C, σ) is compact, g−1QpF ∈ Aκ
c ((C, σ), (C, τ)),

and for each q ∈ S(E,w), (x, y) 7→ q(x− y) is continuous on (x, y) ∈ (C, σ)× E;

or

(II) E is locally convex, σ = τ on C, and g−1QpF ∈ Aσ
c ((C, τ), (C, τ)) is

compact.
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Then there exists an (x0, y0) ∈ F such that

p(gx0 − y0) = dp(y0, C).

Moreover, if gx0 ∈ C, then we have

p(gx0 − y0) = dp(y0, IC(gx0)).

In this case, gx0 ∈ BdC and y0 /∈ IC(gx0) whenever p(gx0 − y0) > 0.

Proof. Under the assumptions (I) or (II), by Lemmas 2 or 1, respectively, g−1QpF

has a fixed point x0 ∈ (g−1QpF )x0; that is, there exists an (x0, y0) ∈ F such that

gx0 ∈ Qp(y0); or equivalently

p(gx0 − y0) = dp(y0, C).

If gx0 ∈ C, then for z ∈ IC(gx0)\C, there exist u ∈ C and r > 1 such that

z = gx0 + r(u− gx0). Suppose that p(gx0 − y0) > p(z − y0). Since

u =
1

r
z + (1− 1

r
)gx0 ∈ C,

we have

p(u− y0) ≤
1

r
p(z − y0) + (1− 1

r
)p(gx0 − y0) < p(gx0 − y0),

a contradiction. Therefore, p(gx0 − y0) ≤ p(z − y0) for all z ∈ IC(gx0) and hence,

for all z ∈ IC(gx0). Since gx0 ∈ IC(gx0), we have

p(gx0 − y0) = dp(y0, IC(gx0)).

Suppose that p(gx0 − y0) > 0. Then clearly y0 /∈ IC(gx0). Suppose that gx0 ∈
IntC. Then IC(gx0) = E. Since y0 ∈ E, we have dp(y0, IC(gx0)) = 0, which is a

contradiction. This completes our proof.
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Remark. Since σ and τ on C may be different topologies in Case (I), we can

consider various situations. In fact, in Case (I), σ and τ are related only by

(*) for each q ∈ S(E,w), (x, y) 7→ q(x− y) is continuous on (C, σ)× (E, τ).

Therefore, it is sufficient to assume that

(1) as a convex space, (C, σ) has a topology σ finer than the relative one with

respect to (E,w); and

(2) τ is any topology finer than w.

Corollary 1.1. Under the hypothesis of Theorem 1, if g(C) = C, then the fol-

lowing equivalent statements hold:

(i) There exists an (x0, y0) ∈ F such that

p(gx0 − y0) = dp(y0, IC(gx0)).

(ii) If H : C → 2E is a multifunction such that for any (x, y) ∈ F with gx /∈ Hx,

there exists a z ∈ IC(gx) satisfying

p(gx− y) > p(z − y),

then gx0 ∈ Hx0 for some x0 ∈ C.

(iii) If H : C → 2E is a multifunction such that Hx ⊂ IC(gx) for all x ∈ C

and that, for each (x, y) ∈ F with gx /∈ Hx, there exists a z ∈ Hx satisfying

p(gx− y) > p(z − y),

then gx0 ∈ Hx0 for some x0 ∈ C.

Proof. (i) =⇒ (ii) For the (x0, y0) ∈ F in (i), suppose that gx0 /∈ Hx0. Then, by

assumption, for any y ∈ Fx0 there exists a z ∈ IC(gx0) satisfying

p(gx0 − y) > p(z − y).

This contradicts (i).
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(ii) =⇒ (iii) Note that Hx ⊂ IC(gx). Therefore, for each (x, y) ∈ F with

gx /∈ Hx, z ∈ Hx satisfies the inequality in (ii).

(iii) =⇒ (i) Suppose that, for any (x, y) ∈ F , there exists a z ∈ IC(gx0) such

that

p(gx− y) > p(z − y).

Let H : C → 2E be defined by Hx = {z ∈ IC(gx) : p(gx− y) > p(z − y) for some

y ∈ Fx} for x ∈ C. Then gx /∈ Hx for all x ∈ C by definition. However, for each

(x, y) ∈ F , there exists a z ∈ Hx satisfying the inequality in (iii). This contradicts

(iii). Therefore, we should have (i). This completes our proof.

Particular Forms.

1. If C is a compact convex subset of a locally convex Hausdorff topological

vector space E, g = 1C , and F = H ∈ K(C,E), then Corollary 1.1(ii) reduces to

Reich [R2, Theorems 1 and 2].

2. Some variants of Corollary 1.1 are obtained by Sehgal, Singh, and Gastle

[SSG, Theorem 1 and Corollaries 1 and 3] for a continuous multifunction F ∈
K(C,E).

The following is basic for various coincidence or fixed point results, especially,

for normed vector spaces.

Corollary 1.2. Under the hypothesis of Theorem 1, if g(C) = C, then there

exists an (x0, y0) ∈ F such that dp(gx0, Fx0) = 0 whenever one of the following

conditions holds:

(i) For each (x, y) ∈ F , p(gx− y) > 0 implies p(gx− y) > dp(y, IC(gx)).

(ii) For each (x, y) ∈ F , there exists a number λ (real or complex, depending on

whether E is real or complex) such that

|λ| < 1 and λgx+ (1− λ)y ∈ IC(gx).

(iii) For each x ∈ X, we have Fx ⊂ IC(gx).
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Proof. (i) For the (x0, y0) ∈ F in the conclusion of Theorem 1, suppose that

dp(gx0, Fx0) > 0. Then, for y0 ∈ Fx0, we have p(gx0 − y0) > dp(y0, IC(gx0)),

which contradicts the conclusion of Theorem 1.

(ii) Suppose that p(gx− y) > 0 for (x, y) ∈ F . By putting z = λgx+(1−λ)y ∈
IC(gx), we have

p(z − y) ≤ |λ|p(gx− y) < p(gx− y)

and hence

dp(y, IC(gx)) < p(gx− y).

Therefore, (ii) implies (i).

(iii) Put λ = 0 in (ii).

Particular Form. For σ = τ , g = 1C and Vσ
c instead of Aσ

c , a normed vector

space version of Corollary 1.2 is due to Park, Singh, and Watson [PSW, Corollary

1].

Recall that a map g : X → Y is proper if g−1(K) is compact whenever K is

compact in Y .

The following is an example satisfying the hypothesis of Theorem 1:

Corollary 1.3. Let C be a nonempty convex subset of a normed vector space E

and Q : E → 2C the metric projection satisfying

(1) Qx ̸= ∅ for each x ∈ E; and

(2) Q maps compact subsets of E onto compact subsets of C.

Let g : C → C be a continuous, proper, almost quasiconvex surjection and f : C →
E a compact continuous map.

Then there exists an x0 ∈ C such that

∥gx0 − fx0∥ = d(fx0, IC(gx0)) = d(fx0, C).

Proof. As in the proof of Sehgal and Singh [SS, Theorem 3], we can show that

g−1Qf ∈ K(C,C). Since f is compact, Q satisfies (2), and g is proper, we know

that g−1Qf is compact. Therefore, by Theorem 1(II), we have the conclusion.
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Particular Forms.

1. If g is almost affine instead of almost quasiconvex, then Corollary 1.3 reduces

to Sehgal and Singh [SS, Theorem 3].

2. If C is approximatively compact, then Q satisfies conditions (1) and (2) of

Corollary 1.3. See Lemma 3.

By putting σ = τ in Theorem 1, we obtain the following useful result:

Theorem 2. Let C be a convex subset of a Hausdorff topological vector space E,

p ∈ S(E) and g ∈ C(C,C) with acyclic fibers. Suppose that either

(I) E∗ separates points of E, C is compact, and F ∈ Aκ
c (C,E); or

(II) E is locally convex, C is approximatively p-compact, F ∈ Aσ
c (C,E) is

compact, and g is proper.

Then there exists an (x0, y0) ∈ F such that

p(gx0 − y0) = dp(y0, IC(gx0)).

Moreover, gx0 ∈ BdC and y0 /∈ IC(gx0) whenever p(gx0 − y0) > 0.

Proof. Since g has acyclic fibers, we have C = g(C). Consider the metric projec-

tion Qp : E → 2C . Then by Lemma 3, Qp ∈ K(E,C) ⊂ A(E,C).

(I) Note that g−1 ∈ V(C,C) ⊂ A(C,C). Since Ac is closed under composition,

we have g−1QpF ∈ Aκ
c (C,C).

(II) Since F is compact and Qp is u.s.c. and compact-valued, we know QpF

is compact. Let K = (QpF )(C) ⊂ C. Then g−1|K has the closed graph with

Hausdorff compact range since g is proper. Therefore g−1|K ∈ V(K,C) ⊂ A(K,C).

Therefore, g−1QpF ∈ Aσ
c (C,C) is compact.

In any case, by Theorem 1, the conclusion follows.
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Particular Forms.

1. If C itself is compact, g = 1C , and F = f ∈ C(C,E), then Theorem 2 for a

normed vector space is just Fan [F, Theorem 2], which is the origin of Theorem 2.

2. For g = 1C and F = f ∈ C(C,E), Theorem 2(II) reduces to Reich [R1,

Corollary 2.2].

3. If C itself is compact in (II), then g ∈ C(C,C) is clearly proper. In this case,

Theorem 2 for a normed vector space and for F = f ∈ C(C,E) improves Carbone

and Conti [CC, Corollary 1]. Moreover, for an almost affine map g, Theorem 2 for

a normed vector space reduces to Prolla [Pr, Theorem].

4. If p is a norm and F = f , Theorem 2(II) improves Carbone and Conti [CC,

Theorem and Corollary 2].

5. For g = 1C and Vσ
c instead of Aσ

c , Theorem 2(II) reduces to Park, Singh,

and Watson [PSW, Theorem 3].

6. For g = 1C , Theorem 2(II) reduces to Park [P3, Theorem 5].

Under the hypothesis of Theorem 2(I), we obtain a very general coincidence

theorem.

Theorem 3. Let C be a compact convex subset of a topological vector space E,

F ∈ Aκ
c (C,E), g ∈ C(C,C) with acyclic fibers. If E∗ separates points of E, then

there exists an x0 ∈ C such that gx0 ∈ Fx0 whenever one of the conditions (i)–(iii)

in Corollary 1.2 holds for each p ∈ S(E,w).

Proof. Since (iii) =⇒ (ii) =⇒ (i) as shown in the proof of Corollary 1.2, it suffices

to assume (i). Note that the hypothesis of Theorem 1(I) is satisfied for each

p ∈ S(E,w) as shown in the proof of Theorem 2. Moreover, since C is compact,

we may regard F ∈ Ac(C,E). Therefore, by Corollary 1.2, for each p ∈ S(E,w)

we have

Fp = {x ∈ C : dp(gx, Fx) = 0} ̸= ∅.

Since F is u.s.c. and compact-valued, by Lemma 4, Fp is a nonempty closed

subset of C. Further, {Fp : p ∈ S(E,w)} has the finite intersection property. In
10



fact, for each {p1, p2, · · · , pn} ⊂ S(E,w) we have p =
∑n

i=1 pi ∈ S(E,w) and

Fp ⊂
∩n

i=1 Fpi . Since C is compact, we have an u ∈
∩
{Fp : p ∈ S(E,w)} ̸= ∅.

Now, we claim that gu ∈ Fu. Suppose that gu /∈ Fu. Then the origin 0

does not belong to the compact set K = gu− Fu. For each z ∈ K there exists a

pz ∈ S(E,w) such that pz(z) > 0. Since pz is continuous on E, there exists an open

neighborhood Uz of z such that pz(y) > 0 for every y ∈ Uz. Let {Uz1 , · · · , Uzk} be

a finite subcover of the cover {Uz}z∈K of K and pu =
∑k

i=1 pzi ∈ S(E,w). Since

pu|K is continuous, it attains its infimum on K. Since the minimum can not be

zero, we have dpu(gu, Fu) > 0. This contradicts u ∈
∩
{Fp : p ∈ S(E,w)} ̸= ∅.

This completes our proof.

Particular Forms.

1. For a locally convex Hausdorff topological vector space E, F ∈ K(C,E), and

g = 1C , Theorem 3 for (i) reduces to Reich [R1, Theorem 3.1], [R2, Theorem 2],

and improves Sehgal, Singh, and Gastl [SSG, Corollary 1].

2. If E has the weak topology, F ∈ K(C,E), and g = 1C , then Theorem 3 for

(i) improves Ding and Tan [DT, Corollary 1].

3. For a locally convex Hausdorff topological vector space E with the weak

topology and F ∈ K(C,E), Theorem 3 reduces to Ding and Tan [DT, Theorems

4–6].

4. For a normed vector space E and F = f ∈ C(C,E), Theorem 3 extends

Sessa and Singh [SeS, Theorem 4].

5. For g = 1C , Theorem 3 reduces to Park [P3, Theorem 4].

Recall that a reflexive Banach space E has the Oshman property if the metric

projection Q on every closed convex subset belongs to K(E,C).

Theorem 4. Let C be a closed convex subset of a Banach space E with the Osh-

man property, F ∈ Aκ
c (C,E) a compact map, g ∈ C(C,C) a proper map with

acyclic fibers, Then there exists an (x0, y0) ∈ F such that

∥gx0 − y0∥ = d(y0, C) = d(y0, IC(gx0)).

Proof. Just follow the proof of Theorem 2(I).
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Particular Forms.

1. For g = 1C and F = f ∈ C(C,E), Theorem 4 is due to Reich [R2, Proposition

2.3].

2. For g = 1C and Kσ
c instead of Aκ

c , Theorem 4 reduces to Park, Singh, and

Watson [PSW, Theorem 4].

3. For g = 1X , Theorem 4 reduces to Park [P3, Theorem 6].

Corollary 4.1. Under the hypothesis of Theorem 4, there exists an x0 ∈ C such

that gx0 ∈ Fx0 if one of the following conditions holds:

(i) For each x ∈ C with d(gx, Fx) > 0 and each y ∈ Fx, there exists a z ∈

IC(gx) such that

∥gx− y∥ > ∥z − y∥.

(ii) For each (x, y) ∈ F , there exists a number λ (as in Corollary 1.2) such that

|λ| < 1 and λgx+ (1− λ)y ∈ IC(gx).

(iii) For each x ∈ C, Fx ⊂ IC(gx).

Particular Forms.

1. For g = 1C and K instead of Aκ
c , Corollary 4.1 reduces to Reich [R1, Propo-

sition 3.2 and Theorem 3.3], [R2, Theorems 6 and 7].

2. For g = 1C and Vσ
c instead of Aκ

c , Corollary 4.1 reduces to Park, Singh, and

Watson [PSW, Corollary 2].

3. For g = 1C , Corollary 4.1 reduces to Park [P3, Corollary 4].
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Final Remark. In Theorems 2 and 4, if F ∈ K(C,E) and F is l.s.c. (hence, F

is continuous), then some authors obtained the following conclusion:

(A) There exists an x0 ∈ C such that

dp(gx0, Fx0) ≤ dp(z, Fx0) for all z ∈ IC(gx0).

Note that (A) implies the following conclusion of Theorems 2 and 4:

(B) There exists an (x0, y0) ∈ F such that

p(gx0 − y0) ≤ p(z − y0) for all z ∈ IC(gx0).

In fact, since Fx0 is compact there exists an y0 ∈ Fx0 such that dp(gx0, Fx0) =

p(gx0 − y0) and hence

p(gx0 − y0) ≤ dp(z, Fx0) ≤ p(z − y0) for all z ∈ IC(gx0).

Note that there are examples of F ∈ K(C,E) which does not satisfy (A). There-

fore, in order to ensure (A), the lower semicontinuity of F is not dispensable.

However, for F ∈ V(C,E), (A) can not be true even if F is continuous and

g = 1C .

Example. Let C = [−1, 1]× {0} ⊂ R2 = E, g = 1C , and

Fx = [(−2, 0), (0, 2)] ∪ [(0, 2), (2, 0)]

for x ∈ C, where [P,Q] stands for the line segments joining points P,Q ∈ R2.

Then F : C → E is constant map and hence continuous. Note that, obviously,

there is no x0 ∈ C satisfying (A). However, x0 = (1, 0) and y0 = (3/2, 1/2) satisfies

(B).

Therefore, for acyclic maps or maps in more general classes the conclusion (B)

seems to be more natural than (A).
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