REMARKS ON SET-VALUED GENERALIZATIONS
OF BEST APPROXIMATION THEOREMS

SEHIE PARK

1. INTRODUCTION

In our previous work [P4], most of known generalizations of the Fan or Prolla
type best approximation theorems for single-valued maps are improved, extended,
and unified. In the present paper, we mainly consider set-valued generalizations
of best approximation theorems.

Usually such results are obtained for Kakutani maps; that is, upper semicontin-
uous multifunctions with compact convex values, defined on a convex subset of a
locally convex Hausdorff topological vector space. However, in this paper, we deal
with much larger class of multifunctions containing acyclic maps which are upper
semicontinuous multifunctions with compact acyclic values, defined on a convex
subset of a topological vector space having sufficiently many linear functionals.
Our arguments are based on new types of fixed point theorems recently due to the
author [P1,2].

Consequently, earlier works of Fan [F], Reich [R1,2], Prolla [Pr], Sehgal and
Singh [SS], Sehgal, Singh, and Gastl [SSG], Carbone and Conti [CC], Ding and
Tan [DT], Park, Singh, and Watson [PSW], Park [P3|, and others are properly

extended and improved.

The author was partially supported by Ministry of Education, 1994, Project No.BSRI-94-
1413.
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2. PRELIMINARIES

A multifunction or set-valued map (simply, map) F : X — 2Y is a function with
nonempty set-values Fx C Y for each x € X. The set {(x,y) : y € Fx} is called
either the graph of F or, simply, F. So (z,y) € F if and only if y € Fx. For any
AcC X, let F(A) = {Fx:2z € A}. Forany BC Y, let F1(B) = {z € X :
FxN B # 0}. If B is a singleton {y} in Y, then F~1(B) is called a fiber denoted
F~1y.

For topological spaces X and Y, a map F : X — 2Y is upper semicontinuous
(uw.s.c.) if, for each closed set B C Y, F~1(B) is closed in X; lower semicontinuous
(l.s.c.) if, for each open set B C Y, F~1(B) is open in X; continuous if F is both
u.s.c. and ls.c.; and compact if F(X) is contained in a compact subset of Y. A
set K C X is said to be o-compact if K is a countable union of compact sets. A
nonempty topological space is acyclic if all of its reduced Cech homology groups
over rationals vanish.

A convex space C' is a nonempty convex set with any topology that induces the
Euclidean topology on the convex hulls of its finite subsets. Such convex hulls are
called polytopes.

Given a class L of maps, L(X,Y) denotes the set of all maps F : X — 2Y
belonging to L, and L. the set of all finite composites of maps in L.

A class 2 of maps is one satisfying the following;:

(i) 2 contains the class C of (single-valued) continuous functions;

(ii) each F' € 2, is u.s.c. and compact-valued; and

(iii) for any polytope P, each F' € 2(.(P, P) has a fixed point.
Examples of 2 are C, the Kakutani maps K (with convex values), the acyclic maps
V (with acyclic values), the Aronszajn maps M (with Rs values) [Gr|, the O’Neill
maps N (with values consisting of one or m acyclic components, where m is fixed)
[Gr], the approachable maps A in topological vector spaces [BD 1-3|, admissible
maps in the sense of Gérniewicz [G], permissible maps of Dzedzej [D], and others.

Moreover, we define



F e A7(X,Y) <= for any o-compact subset K of X, thereisaI' € A.(X,Y)
such that I'z C F'z for each =z € K.

F € A5(X,Y) <= for any compact subset K of X, thereis a I' € A.(X,Y)
such that I'z C F'z for each =z € K.

Note that 2 C A, C A7 C AL. Examples of AZ are K7 due to Lassonde [L] and
V¢ due to Park, Singh, and Watson [PSW]. Note that K7 contains classes K, R,
and T in [L].

In this paper, we assume that V C 2; that is, a class 2L always contains V.

Let E = (E,T) be a topological vector approximations to y € E from C' by
Qp(y) = {z € C : p(y — z) = dp(y,C)}. The multifunction Q, : E — 2 thus
defined is called the metric projection onto C' if Q,(y) # 0 for each y € E; that
is, C' is proximinal (with respect to p). The set C is said to be approximatively
compact (with respect to p) if for each y € E, every net {z, : a € A} C C such
that p(y — zo) — dp(y, C) has a subnet that converges to an element of C.

The following is well-known [R1]:

Lemma 3. Let C' be a nonempty convex subset of a Hausdorff topological vector

space E and p € S(E). If C is approzimatively p-compact, then Q, € K(E,C).

Note that every compact subset is approximatively compact and that every
closed convex subset of a uniformly convex Banach space is approximatively norm-
compact.

In (E,7), let Bd, Int, and  denote the boundary, interior, and closure, re-
spectively, with respect to 7.

The inward and outward setsof X C F at x € E, Ix(z) and Ox(z), are defined

as follows:

Ix(x)={x+r(u—=z):ue X, r>0}

Ox(z)={z+r(u—z):ue X, r<0}.
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Let E be a vector space, p a seminorm on F, and C' a nonempty convex subset
of E. A function g : C'— FE is said to be
(i) almost p-affine if

plgrz+ (1 —r)y) —u) < rp(ge —u) + (1 —r)p(gy — u);

(ii) almost p-quasiconvez if

p(g(rez + (1 —r)y) —u) < max{p(gzr — u), p(gy — u)},

for z,y € C,u € E,and r € (0,1).
For a topological space X, a function f : X — R is said to be lower semicon-
tinuous (l.s.c.) if {x € X : fr > r} is open for each r € R.

The following is well known:

Lemma 4. Let X and Y be topological spaces, h : X XY — R ls.c., and F :
X — 2Y a compact-valued u.s.c. multifunction. Then x — inf{h(z,y) : y € Fz}

18 l.s.c. on X.

3. MAIN RESULTS

The following is a main result in this paper:

Theorem 1. Let (C,0) be a conver space, E = (E,7) a Hausdorff topological
vector space containing C as a subset, F : (C,0) — 2F p e S(E,w), Q,: E —
2(97) the metric projection, and g € C((C,7), E) such that C C g(C). Suppose
that either

(I) E* separates points of E, (C, o) is compact, g~ Q,F € AL((C,0),(C, 1)),
and for each q € S(E,w), (x,y) — q(z —y) is continuous on (z,y) € (C,0) x E;
or

(1) E is locally convexr, o = 7 on C, and g~ 'Q,F € AI((C,7),(C, 7)) is

compact.



Then there exists an (xo,yo) € F such that

(g0 — Yo) = dp(yo, C).

Moreover, if grog € C, then we have

p(g0 = yo) = dp(yo, Ic(gz0))-
In this case, gxo € BAC and yo ¢ Ic(gxo) whenever p(gxo — yo) > 0.

Proof. Under the assumptions (I) or (II), by Lemmas 2 or 1, respectively, g71Q, F
has a fixed point zg € (971Q,F)xo; that is, there exists an (zg,y0) € F such that

gxo € Qp(Yo); or equivalently
p(gz0 — yo) = dp(yo, C).

If grg € C, then for z € Io(gzo)\C, there exist v € C and r > 1 such that

z = gxo + r(u — gzo). Suppose that p(gxo — yo) > p(z — yo). Since
1 1
u=—-z+(1—-—)gzy € C,
r r

we have

1 1

p(u—1yo) < ;P(Z —yo) + (1 )p(970 — yo) < p(g9T0 — Yo),

r
a contradiction. Therefore, p(gzo — yo) < p(z — yo) for all z € I-(gzy) and hence,

for all z € Ic(gxg). Since gz € Ic(gxg), we have

p(90 — yo) = dp(yo, Io(go)).

Suppose that p(gzg — yo) > 0. Then clearly yo ¢ Ic(gxo). Suppose that gzg €
Int C. Then I¢(gzo) = E. Since yo € E, we have d,(yo, Ic(g7o)) = 0, which is a

contradiction. This completes our proof.
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Remark. Since ¢ and 7 on C' may be different topologies in Case (I), we can

consider various situations. In fact, in Case (I), o and 7 are related only by

(*) for each ¢ € S(E,w), (x,y) — q(x — y) is continuous on (C,0) x (E,T).
Therefore, it is sufficient to assume that

(1) as a convex space, (C,0) has a topology o finer than the relative one with
respect to (E,w); and

(2) 7 is any topology finer than w.

Corollary 1.1. Under the hypothesis of Theorem 1, if g(C) = C, then the fol-
lowing equivalent statements hold:

(i) There exists an (xo,y0) € F such that

p(gro — yo) = dp(yojc(gl‘o))-

(ii) If H : C — 2F is a multifunction such that for any (x,y) € F with gv ¢ Hx,
there exists a z € Ic(gx) satisfying

plgr —y) > p(z —y),

then grg € Hxqg for some xg € C.
(iii) If H : C — 2F is a multifunction such that Hx C Ic(gx) for all x € C
and that, for each (x,y) € F with gx ¢ Hzx, there exists a z € Hx satisfying

p(gz —y) > p(z —y),
then gxg € Hxq for some xg € C.

Proof. (i) = (ii) For the (z¢,y0) € F in (i), suppose that gxg ¢ Hxg. Then, by

assumption, for any y € Fxq there exists a z € I¢(gzo) satisfying

p(gzo —y) > p(z — y).

This contradicts (i).



(ii) = (iii) Note that Hz C Ic(gz). Therefore, for each (z,y) € F with
gx ¢ Hzx, z € Hx satisfies the inequality in (ii).
(iii) = (i) Suppose that, for any (z,y) € F, there exists a z € I¢(gro) such
that
plgz —y) > p(z — y).

Let H : C — 2F be defined by Hx = {z € Ic(gz) : p(9z — y) > p(z — ) for some
y € Fx} for x € C. Then gz ¢ Hz for all © € C by definition. However, for each
(x,y) € F, there exists a z € Hx satisfying the inequality in (iii). This contradicts

(iii). Therefore, we should have (i). This completes our proof.

Particular Forms.

1. If C' is a compact convex subset of a locally convex Hausdorff topological
vector space E, g = 1¢, and F' = H € K(C, E), then Corollary 1.1(ii) reduces to
Reich [R2, Theorems 1 and 2.

2. Some variants of Corollary 1.1 are obtained by Sehgal, Singh, and Gastle
[SSG, Theorem 1 and Corollaries 1 and 3] for a continuous multifunction F €
K(C, E).

The following is basic for various coincidence or fixed point results, especially,

for normed vector spaces.

Corollary 1.2. Under the hypothesis of Theorem 1, if g(C) = C, then there
exists an (xo,yo) € F such that d,(gzo, Fxg) = 0 whenever one of the following
conditions holds:

(i) For each (z,y) € F, p(gz —y) > 0 implies p(gx — y) > d,(y, Ic(gz)).

(ii) For each (x,y) € F, there exists a number X\ (real or complez, depending on

whether E is real or complex) such that
A <1 and Mgz + (1— Ny € Ic(gz).

(iii) For each x € X, we have Fx C Ic(gx).
7



Proof. (i) For the (z9,y9) € F in the conclusion of Theorem 1, suppose that
dy(g9zo, Fxg) > 0. Then, for yo € Fxo, we have p(gzo — yo) > dp(ygjc(gxo)),
which contradicts the conclusion of Theorem 1.

(ii) Suppose that p(gz —y) > 0 for (z,y) € F. By putting z = Agz+ (1 — Ay €
Ic(gr), we have

p(z —y) < [Alp(gz —y) < p(9z —y)
and hence
dp(y, Ic(gz)) < plgz —y).

Therefore, (ii) implies (i).
(iif) Put A = 0 in (ii).

Particular Form. For ¢ = 7, g = 1¢ and V¢ instead of 27, a normed vector

c

space version of Corollary 1.2 is due to Park, Singh, and Watson [PSW, Corollary
1].

Recall that a map g : X — Y is proper if g7 1(K) is compact whenever K is

compact in Y.

The following is an example satisfying the hypothesis of Theorem 1:
Corollary 1.3. Let C' be a nonempty convex subset of a normed vector space E
and Q : E — 29 the metric projection satisfying

(1) Qx # 0 for each x € E; and
(2) @ maps compact subsets of E onto compact subsets of C'.

Let g : C'— C' be a continuous, proper, almost quasiconvex surjection and f : C —
E a compact continuous map.

Then there exists an xg € C such that

lgzo — fxoll = d(fxo,Ic(gxo)) = d(fxo,C).

Proof. As in the proof of Sehgal and Singh [SS, Theorem 3], we can show that
g 1Qf € K(C,C). Since f is compact, Q satisfies (2), and g is proper, we know
that g~ 'Qf is compact. Therefore, by Theorem 1(II), we have the conclusion.
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Particular Forms.

1. If g is almost affine instead of almost quasiconvex, then Corollary 1.3 reduces
to Sehgal and Singh [SS, Theorem 3].

2. If C is approximatively compact, then @) satisfies conditions (1) and (2) of
Corollary 1.3. See Lemma 3.

By putting ¢ = 7 in Theorem 1, we obtain the following useful result:

Theorem 2. Let C' be a convex subset of a Hausdorff topological vector space E,
p € S(E) and g € C(C,C) with acyclic fibers. Suppose that either
(I) E* separates points of E, C is compact, and F € A5 (C, E); or
(IT1) E s locally convex, C' is approzimatively p-compact, F € 2A7(C, E) is
compact, and g is proper.

Then there exists an (xo,yo) € F' such that

p(970 — Yo) = dp(yojc(givo))-
Moreover, gzo € BAC and yo ¢ Ic(gxo) whenever p(gro — yo) > 0.

Proof. Since g has acyclic fibers, we have C' = g(C'). Consider the metric projec-
tion Q, : E — 2¢. Then by Lemma 3, Q, € K(E,C) C (E,C).

(I) Note that g7 € V(C,C) C (C,C). Since . is closed under composition,
we have g7'Q,F € A¥(C,C).

(IT) Since F' is compact and @, is u.s.c. and compact-valued, we know Q,F
is compact. Let K = W C C. Then g~ !, has the closed graph with
Hausdorff compact range since g is proper. Therefore g~ | € V(K,C) C A(K, C).
Therefore, g~ 1Q,F € A7 (C, C) is compact.

In any case, by Theorem 1, the conclusion follows.



Particular Forms.

1. If C itself is compact, g = 1¢, and F' = f € C(C, E), then Theorem 2 for a
normed vector space is just Fan [F, Theorem 2], which is the origin of Theorem 2.

2. For g = 1¢ and F = f € C(C,FE), Theorem 2(II) reduces to Reich [R1,
Corollary 2.2].

3. If C itself is compact in (II), then g € C(C, C) is clearly proper. In this case,
Theorem 2 for a normed vector space and for F' = f € C(C, E) improves Carbone
and Conti [CC, Corollary 1]. Moreover, for an almost affine map g, Theorem 2 for
a normed vector space reduces to Prolla [Pr, Theorem)].

4. If p is a norm and F = f, Theorem 2(II) improves Carbone and Conti [CC,
Theorem and Corollary 2].

5. For g = 1¢ and V7 instead of 27, Theorem 2(II) reduces to Park, Singh,
and Watson [PSW, Theorem 3].

6. For g = 1¢, Theorem 2(II) reduces to Park [P3, Theorem 5.

Under the hypothesis of Theorem 2(I), we obtain a very general coincidence

theorem.

Theorem 3. Let C be a compact convex subset of a topological vector space E,
F eA:(C,E), g € C(C,C) with acyclic fibers. If E* separates points of E, then
there ezists an xg € C such that gxg € Fxy whenever one of the conditions (i)—(iii)

in Corollary 1.2 holds for each p € S(E,w).

Proof. Since (iii) = (ii) = (i) as shown in the proof of Corollary 1.2, it suffices
to assume (i). Note that the hypothesis of Theorem 1(I) is satisfied for each
p € S(E,w) as shown in the proof of Theorem 2. Moreover, since C' is compact,
we may regard F' € 2.(C, E). Therefore, by Corollary 1.2, for each p € S(E,w)
we have

F,={x € C:dy(g9z,Fz) =0} # 0.

Since F' is u.s.c. and compact-valued, by Lemma 4, F, is a nonempty closed

subset of C. Further, {F, : p € S(E,w)} has the finite intersection property. In
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fact, for each {p1,p2,-- ,pn} C S(E,w) we have p = > " p; € S(E,w) and
F, c Ni_, Fp,. Since C' is compact, we have an u € (\{F, : p € S(E,w)} # 0.
Now, we claim that gu € Fu. Suppose that gu ¢ Fu. Then the origin 0
does not belong to the compact set K = gu — F'u. For each z € K there exists a
p. € S(E,w) such that p.(z) > 0. Since p, is continuous on F, there exists an open
neighborhood U, of z such that p,(y) > 0 for every y € U,. Let {U,,,--- ,U., } be
a finite subcover of the cover {U,},cx of K and p, = Z,’;Il P2, € S(E,w). Since
pu|k is continuous, it attains its infimum on K. Since the minimum can not be
zero, we have dp, (gu, Fu) > 0. This contradicts u € ({F, : p € S(E,w)} # 0.

This completes our proof.

Particular Forms.

1. For a locally convex Hausdorff topological vector space E, F' € K(C, F), and
g = 1o, Theorem 3 for (i) reduces to Reich [R1, Theorem 3.1], [R2, Theorem 2],
and improves Sehgal, Singh, and Gastl [SSG, Corollary 1].

2. If E has the weak topology, F' € K(C, E), and g = 1¢, then Theorem 3 for
(i) improves Ding and Tan [DT, Corollary 1].

3. For a locally convex Hausdorff topological vector space FE with the weak
topology and F' € K(C, E), Theorem 3 reduces to Ding and Tan [DT, Theorems
4-6].

4. For a normed vector space E and F' = f € C(C, E), Theorem 3 extends
Sessa and Singh [SeS, Theorem 4].

5. For g = 1¢, Theorem 3 reduces to Park [P3, Theorem 4].

Recall that a reflexive Banach space E has the Oshman property if the metric

projection @ on every closed convex subset belongs to K(F, C).

Theorem 4. Let C be a closed convex subset of a Banach space E with the Osh-
man property, F € AL (C,E) a compact map, g € C(C,C) a proper map with
acyclic fibers, Then there exists an (xo,yo) € F such that

||9370 - yo” = d(ym C) = d(yojc(g%))-

Proof. Just follow the proof of Theorem 2(I).
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Particular Forms.

1. Forg =1¢c and F = f € C(C, E), Theorem 4 is due to Reich [R2, Proposition
2.3].

2. For g = 1¢ and KY instead of A7, Theorem 4 reduces to Park, Singh, and
Watson [PSW, Theorem 4].

3. For g = 1x, Theorem 4 reduces to Park [P3, Theorem 6].

Corollary 4.1. Under the hypothesis of Theorem 4, there exists an xg € C' such
that grg € Fxq if one of the following conditions holds:
(i) For each x € C with d(gx,Fz) > 0 and each y € Fx, there exists a z €

Ic(gx) such that

lgz =yl > ||z — yl|.

(ii) For each (x,y) € F, there exists a number X (as in Corollary 1.2) such that

Al <1 and Mgz + (1— Ny € Ic(gz).

(iii) For each x € C, Fx C I¢(gx).

Particular Forms.

1. For g = 1¢ and K instead of 2%, Corollary 4.1 reduces to Reich [R1, Propo-
sition 3.2 and Theorem 3.3|, [R2, Theorems 6 and 7].

2. For g = 1¢ and V¢ instead of 27, Corollary 4.1 reduces to Park, Singh, and
Watson [PSW, Corollary 2].

3. For g = 1¢, Corollary 4.1 reduces to Park [P3, Corollary 4].
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Final Remark. In Theorems 2 and 4, if F' € K(C, E) and F is l.s.c. (hence, F
is continuous), then some authors obtained the following conclusion:

(A) There exists an zp € C such that
dy(g9r0, Fxo) < dp(z, Fxo) for all z € Io(gxo).

Note that (A) implies the following conclusion of Theorems 2 and 4:
(B) There exists an (zg,yo) € F such that

p(gro —yo) < p(z —yo) forall z € Io(gxo).

In fact, since Fxo is compact there exists an yo € Fx such that d,(gxo, Fxo) =

p(gx0 — yo) and hence

p(gro — o) < dp(z, Fxg) < p(z —yo) for all z € Tc(gacg).

Note that there are examples of F' € K(C, E) which does not satisfy (A). There-
fore, in order to ensure (A), the lower semicontinuity of F' is not dispensable.

However, for F' € V(C,E), (A) can not be true even if F' is continuous and

g = 10.
Example. Let C =[-1,1] x {0} CR?=E, g = 1¢, and

for x € C, where [P, Q] stands for the line segments joining points P,Q € R?.
Then F : ' — FE is constant map and hence continuous. Note that, obviously,
there is no xg € C satisfying (A). However, zo = (1,0) and yo = (3/2, 1/2) satisfies
(B).

Therefore, for acyclic maps or maps in more general classes the conclusion (B)

seems to be more natural than (A).
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