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We defined admissible classes of maps which are general enough to include
composites of maps appearing in nonlinear analysis or algebraic topology, and
generalized convex spaces which are generalizations of many general convexity
structures. In this paper we obtain a coincidence theorem for admissible maps
defined on generalized convex spaces. Our new result is applied to obtain an
abstract variational inequality, a KKM type theorem, and fixed point
theorems. © 1996 Academic Press, Inc.

1. INTRODUCTION

Recently the first author introduced admissible multifunctions (maps)
and generalized convex (or G-convex) spaces which are adequate to
establish theories on fixed points, coincidence points, KKM maps, varia-
tional inequalities, best approximations, and many others. For details, see
[74, 75, 77, 78, 80].

Our admissible classes of maps are very general enough to include
composites of important maps which appear in nonlinear analysis or
algebraic topology. And our concept of generalized convex spaces is a
generalization of many general convexities which were developed in con-
nection mainly with the fixed point theory and the KKM theory. See [80].

In this paper we obtain a coincidence theorem for admissible maps
defined on G-convex spaces. This new result is applied to obtain an
abstract variational inequality, a KKM type theorem, and fixed point
theorems. Each of our results includes a large number of known theorems
as particular cases. See References.
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The origin of our coincidence theorem is known as the Fan—Browder
fixed point theorem due to Fan [27] and Browder [16-17]. In fact, using his
own generalization of the classical KKM theorem [51], Ky Fan [27]
established an elementary but very basic “geometrical” lemma for multi-
functions. Later Browder [16] restated this result in the more convenient
form of a fixed point theorem by means of the Brouwer fixed point
theorem and the partition of unity argument. Since then, there have
appeared numerous generalizations and applications in various fields such
as fixed point theory, minimax theory, and variational inequalities. Many
of these results are unified and improved in this paper.

2. PRELIMINARIES

A multifunction (or map) F: X —Y is a function from a set X into the
power set 2¥ of Y, that is, a function with the values Fx C Y for x € X and
the fibers Fy={x e X:y e Fx} for yeY. For A CX, let F(A) =
U{Fx: x € A}. For any B C Y, the (lower) inverse and (upper) inverse of B
under F are defined by

F (B)={x€X:FxnB+Q)and F*(B) = {x € X: Fx C B},

resp. The (lower) inverse of F: X —Y is the map F~:Y — X defined by
x € F7y if and only if y € Fx. Given two maps F: X —Y and G:Y — Z,
the composite GF: X — Z is defined by (GF)x = G(Fx) for x € X.

For topological spaces X and Y, a map F: X — Y is upper semicontinu-
ous (us.c.) if, for each closed set B cY, F~(B) is closed in X. A map
F:X —Y is compact provided F(X) is contained in a compact subset
of Y.

Note that composites of u.s.c. maps are u.s.c. and that the image of a
compact set under an u.s.c. map with compact values is compact.

Let  denote the closure.

Let 7° be the fundamental system of neighborhoods of the origin 0 in a
topological vector space (simply, t.v.s.) E. In E, a convex hull of its finite
subset will be called a polytope.

Given a class X of maps, X(X,Y) denotes the set of maps F: X — 1Y
belonging to X, and X, the set of finite composites of maps in X.

A class U of maps is defined by the following properties:

(1) A contains the class of C of (single-valued) continuous func-
tions;
(i) each F € ¥, is u.s.c. with nonempty compact values; and

(iii) for any polytope P, each F € A (P, P) has a fixed point, where
the intermediate spaces of composites are suitably chosen for each 2.
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Examples of 9 are C, the Kakutani maps K (with convex values) [50],
the Aronszajn maps M (with Rj values) [33], the acyclic maps V (with
acyclic values) [25], the O’Neill maps N (with values consisting of one or m
acyclic components, where m is fixed) [33], the approachable maps A in
uniform spaces [8], admissible maps in the sense of Gorniewicz [31],
permissible maps of Dzedzej [24], and others. For details, see [80].

A class A7 is defined as follows:

F e %I‘T(X Y) < for any o-compact subset K of X, there is an Fe
A (K,Y) such that F C Fx for each x € K.

91 7 is due to Park [77] Further, a class 21 is defined as follows:

Fe AL(X,Y) « for any compact subset K of X, there exists an
F € A (K,Y) such that Fx c Fx for each x € K.

AL is due to Park [74, 77, 78] and will be called admissible.

Note that A c A, cAZ AL Examples of A7 are K? due to
Lassonde [58] and V7 due to Park et al. [81]. Note that K contains
K, Fan—Browder type maps [16, 27], and T in [58].

For a nonempty set D, let (D) denote the set of all nonempty finite
subsets of D. For a set A, let |A| denote the cardinality of A. Let A,
denote the standard n-simplex, that is,

n+1 n+1
A, ={ueR" u= ) rue, A (u) =20, Y A(u) =14,
i=1 i=1

where ¢; is the ith unit vector in R"*!,

Let X be a set (in a vector space) and D a nonempty subset of X. Then
(X, D) is called a convex space [77] if convex hulls of any nonempty finite
subsets of D are contained in X and X has a topology that induces the
Euclidean topology on such convex hulls. A subset 4 of X is said to be
D-convex if, for each N e (D), NcA implies co N C A, where co
denotes the convex hull. If X = D, then X = (X, X) becomes a convex
space in the sense of Lassonde [55].

A generalized convex space or a G-convex space (X, D; T') [80] consists of
a topological space X, a nonempty subset D of X, and amap I': {D) — X
with nonempty values such that

(1) foreach A, B {D), A c B implies I'(4) c T'(B); and

(2) for each A € (D) with |A| = n + 1, there exists a continuous
function ¢,: A, = I'(A4) such that J € (A4) implies ¢,(A;) c I'(J), where
A, denotes the face of A, corresponding to J € {A4).

We may write I'(A4) = T, for each 4 € (D). For an (X, D; T'), a subset
C of X is said to be G-convex if for each A € (D), A c C implies
r,cc.
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Note that T', does not need to contain A for A € (D). If D = X, then
(X, D;T') will be denoted by (X;T).

Any convex space (X, D) becomes a G-convex space (X, D;I') by
putting I, = co A.

The major particular forms of G-convex spaces can be adequately
summarized by the following diagram. In the diagram, we may regard
Horvath’s pseudoconvex spaces as S-contractible spaces and Jod’s pseudo-
convex spaces as spaces with simplicial convexity, resp., for simplicity. For
details, see [80].

A convex subset of a t.v.s. ) )
A metric space with

Michael’s convex

Lassonde’s convex space [55] structure [64]
1983 1959
S-contractible Komiya’s convex
space [82—84] 1980 space [53]
(pseudoconvex 1981

space [39] 1983)

Bielawski’s simplicial
H-space [2-4, 41, 43] convexity [11]
1987 1987
(Jo0’s pseudoconvex
space [48] 1989)

/.

G-convex space [80]
1993

3. MAIN RESULTS

We begin with the following coincidence theorem:

THEOREM 1. Let (X, D;T) be a G-convex space, Y a Hausdorff space,
S:D =Y, T: X — Y maps, and F € A5(X,Y). Suppose that

(1.1 for each x € D, Sx is compactly open in Y,

(1.2) for eachy € F(X), M € {S™y) implies T,, € T"y;

(1.3) there exists a nonempty compact subset K of Y such that F(X) N
K c S(D); and
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(1.4) either
@D Y\ K c S(M) for some M € {Dy; or
(ii) for each N € (D), there exists a compact G-convex subset L of X
containing N such that F(Ly)\ K € S(Ly N D).

Then there exists an x € X such that Fx N T x + .

Proof. Since F(X) N K is compact and covered by compactly open
sets Sx by (1.1) and (1.3), there exists an N € (D) such that F(X) N K C
S(N).

Case (). Since Y\ K c S(M) for some M € (D) by (i), we have
F(X)c S(A4), where A =M UN = {x, x,,...,x,,,} € (D). Then,
there exist a ¢, € C(A,, X) such that ¢,(A,) c T, and ¢,(A;) C T for
each Je(A), an Fe L, (A,),Y) such that Fx c Fx for each
XE ¢ A(A ), and {A,}|! the partition of unity subordinated to the cover
{Sx; N Feb (A, )} of Feby(A,).

Define a continuous map p: Fe,(A,) — A, by

n+1

p(y) = Z M(y)e,= X A(y)e,  fory e Fgy(A,),

iEN,

where i € N, = M\(y) #0 =y € S, @ x; €Sy. By (1.2), we have
(¢, p)y € q’)A(A )CF c Ty for each y e Fp,(A); that is, y e
(T, p)y. )

Since pFp, € A(A,,A,), pFp, has a fixed point z € A ; that is,
z € (pFp)z. Put X = ¢,(2). Since p~z N (Fp, )z =p z N Fx + &, for
any y € p_z N Fx, we have y € F$,(A,), (¢, p)y = ,(z) =%, and y €
(T, p)y = T%. Therefore, p~z N FX  TX and hence T% N FX € Tx N
Fx + .

Case (ii). For an N € (D) such that F(X) N K < S(N), consider the
set Ly in (1.4).

We claim that F(L,) c S(L, N D) for F € A (L,,Y) satisfying Fx C
Fx for each x € L. In fact, note that

F(Ly) NKCF(X)NKcS(N) cS(LynND).

On the other hand, F(Ly)\K c F(Ly)\KcCS(LynD) by (14).
Therefore, we have F(Ly) c S(Ly N D).

Note that F A(L ) is compact since it is the image of the compact set Ly
under F. Therefore, F(L,) c S(A) for some A ={x;,x,,...,%,.,} €
(Ly N D).
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For the remainder of the proof, we can just follow that of Case (i) and
show that Tx N Fx € Tx N Fx # (J for some X € L,. This completes our
proof.

Remarks. 1.1f X is a convex space with T, = co A, then (i) implies (ii).
In fact we can choose L, = co(M U N). However, in general, we cannot
say (i) = (i) for G-convex spaces.

2. Note that the Hausdorffness of Y is necessary for the partition of
unity argument in the proof. If F is single-valued we do not need to
assume the Hausdorffness of Y.

3. Note that (1.2) generalizes the following:

(1.2) for eachx € D, Sx € Tx and T~y is G-convex for each y € F(X), as
in Park [77, Theorem 5] for convex spaces and [73, Theorem 3] for
H-spaces.

4. If F is compact, then by putting K = F(X), condition (1.4) holds
automatically.

Particular forms for compact admissible maps. 1. For convex spaces
instead of G-convex spaces, Theorem 1 includes Browder [16, Theorem 1],
Tarafdar and Husain [102, Theorem 1.1], Ben-El-Mechaiekh et al. [10, II,
Théoreme 3.1, 4.1, 4.2 and Corollaire 3.4], Simons [91, Theorem 4.3],
Takahashi [97, Theorem 5], Browder [18, Theorem 4], Komiya [54, Theo-
rem 1], Granas and Liu [35, Theorem 4.1], Lassonde [58, Theorem 4], Park
et al. [81, Theorem 1], and Park [77, Theorem 2].

2. For other particular types of G-convex, Theorem 1 includes Komiya
[53, Theorem 1], Bielawski [11, Propositions 4.9 and 4.12], Horvath [42,
Corollaire 6 and 7; 41, I, Theorem 2'; 43, Corollary 4.2], and Park and Kim
[79, Corollary 3.2].

Particular forms for non-compact admissible maps. 1. For convex spaces,
Theorem 1 reduces to Park [77, Theorem 5], and for H-spaces it reduces to
Park and Kim [79, Theorem 1].

2. For V instead of X, Theorem 1 reduces to Park [70, Theorem 1],
which includes earlier works of Browder [16—18], Tarafdar [98—101], Taraf-
dar and Husain [102], Ben-El-Mechaiekh et al. [9, 10], Yannelis and
Prabhakar [104], Lassonde [55, 56], Ko and Tan [52], Simons [92, 93],
Takahashi [97], Komiya [54], Mehta [62], Mehta and Tarafdar [63], Sessa
[89], Jiang [45—-47], McLinden [61], Granas and Liu [34, 35], Park [66—-68],
and Chang [19].

3. For an H-space X = Y and F = 1, Theorem 1 contains Horvath [39,
Théoréme 4.1; 40, Théoreme 2 and Lemme 1; 41, I, Theorem 2'; 43,
Theorem 3.2], Ding and Tan [23, Theorems 10-12 and Corollaries 2—4],
Ding et al. [22, Corollaries 3-5], Tarafdar [101, Theorem 2], Chen [21,
Theorem 2], and Park [72, Theorem 6; 73, Theorem 4].
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Among the numerous applications of Theorem 1, we give an abstract
variational inequality:

THEOREM 2. Let (X, D;T') be a Hausdorff G-convex space, h: X —
[—oo,00] with h# ®, p: XXX > (—wn,x], g:D XX - (—»,x], Fe
AX(X, X), and K a nonempty compact subset of X. Suppose that

Q2.1 q(x,y) <p(x,y) for (x,y) €D X X, and p(x,y) + h(y) < h(x)
forx € Xandy € Fx;

(2.2) for each x € D, {y € X: q(x, y) + h(y) > h(x)} is compactly open;

(2.3) for each y € F(X), {x € X: p(x,y) + h(y) > h(x)} is G-convex;
and

(2.4) either

@D YN\KcCU,cyly eXiglx,y) + h(y) > h(x)} for some M e
(D); or

(ii) for each N € (D), there exists a compact G-convex subset L of X
containing N such that

F(LW\Kc U {yeX:q(x,y) +h(y)>h(x)}.

xeLynND
Then there exists a solution y, € F(X) N K of the variational inequality
q(x,y0) + h(yo) <h(x) forallx € D.

Moreover, the set of all solutions y, is a compact subset of F(X) N K.
Proof. Define maps S: D — X and T: X — X by

Sx={yeX:q(x,y) +h(y) > h(x)} for x € D,
and
Tx={yeX:p(x,y) + h(y) > h(x)} for x € X.

Then (1.2) is satisfied, since S"y € T"y for each y € X and Ty is
G-convex. Suppose that there exists a y, € F(X) N K such that y, &
S(D). Then the conclusion follows. Therefore we may assume that
F(X) NnKcS(D). Then all of the requirements of Theorem 1 are
satisfied. Hence, there exists an x, € X such that Fx, N Tx, # . Let
Yo € Fxy, N Tx,. Then y, € Fx, and

P(x0,¥9) + h(yo) > h(x,),

which contradicts (2.1). Moreover, the set of all solutions y, is the
intersection

N {y € F(X) NK:q(x,y) +h(y) sh(x)}

xeD
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of compactly closed subsets of the compact set F(X) N K. This completes
our proof.

Remark. 1f X = K itself is compact, then y, € Fx, for some x, € X.
Even for F = 1,, Theorem 2 is a basis of existence theorems of many
results concerning variational inequalities. See [32, 37, 70].

Particular forms. For F = 1, there have appeared a lot of particular
forms of Theorem 2. See Brézis et al. [13], Juberg and Karamardian [49],
Mosco [65], Allen [1], Takahashi [96], Gwinner [37], Lassonde [55], Park
[69], and Ben-El-Mechaiekh [6].

From Theorem 1 we obtain the following KKM theorem for G-convex
spaces:

THEOREM 3. Let (X, D;T) be a G-convex space, Y a Hausdorff space,
and F € AX(X,Y). Let G: D — Y be a map such that

(3.1) for each x € D, Gx is compactly closed in Y;
(3.2) for any N € (D), F(Ty) € G(N); and
(3.3) there exists a nonempty compact subset K of Y such that either
@ N{Gx: x € M} C K for some M € {D); or
(ii) for each N € (D), there exists a compact G-convex subset L, of X
containing N such that F(Ly) N N{Gx: x € Ly, N D} C K.

Then F(X) N KN N{Gx: x € D} # &.

Proof.  Suppose the conclusion does not hold. Then F(X) N K € S(D),
where Sx = Y\ Gx for x € D. Let H:Y — X and T: X — Y be defined
by Hy = U{T,;: M € (S"y)} for y € Y and Tx = H x for x € X. Then
all of the requirements of Theorem 1 are satisfied, and hence 7 and F
have a coincidence point x, € X; that is, Tx, N Fx, # &J. For y € Tx, N
Fx,, we have x, € Ty = U{l;: M € {(S7y)}, and hence there exists a
finite set M in S"y € D such that x, € T,. Since M € {(S”y) implies
yeSx for all x € M, we have y € Fx, N N{Sx:x € M} C F(T;,)) N
N{Sx: x € M}; that is, F(T,,) ¢ G(M). This contradicts (3.2).

Remark. Condition (3.2) is equivalent to Iy € F*G(N). A KKM type
theorem for this case different from Theorem 3 can be found in
[70, Theorem 4].

Particular forms. 1. The origin of Theorem 3 goes back to Sperner [95]
and Knaster ef al. [51] for X =Y =K = A, an n-simplex, D its set of
vertices, and F = 1,.

2. For a convex space X, Theorem 3 reduces to Park [77, Theorem 7]. As
Park noted in [70], a particular form [70, Theorem 3] of [77, Theorem 7] for
V instead of 2 includes earlier works of Fan [27-29], Lassonde [55],
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Chang [19], and Park [67, 68]. Moreover, Park [76] showed that [70,
Theorem 3] also extends a number of KKM type theorems due to Sehgal
et al. [88], Lassonde [57], Shioji [90], Liu [59], Chang and Zhang [20], and
Guillerme [36].

3. For an H-space X and F = 1,, Theorem 3 generalizes Horvath [39,
Théoréme 3.1 and Corollaire 3; 41, I, Theorem 1 and Corollary 1], Bardaro
and Ceppitelli [2, Theorem 1], Ding and Tan [23, Corollary 1 and Theorem
8], Ding et al. [22, Lemma 1], and Park [71, Theorems 1 and 4; 73,
Theorems 1 and 3].

From Theorem 1, we obtain the following:

THEOREM 4. Let (X, D) be a convex space, E a Hausdor{f t.v.s. contain-
ing X as a subset, F € A(X, E), and V a convex open neighborhood of the
origin of E. Suppose that there exists a nonempty compact subset K of E such
that

(@ F(X)NKcD+V;and

(b) foreach N € (D), there exists a compact D-convex subset L of X
containing N such that F(L )\ K c (L, N D) + V.
Then F has a V-fixed point x,, € X; that is, Fx, N (x, + V) = &.

Proof. Define S:D —<E by Sx=x+V forx €D and T: X — E by
Tx =x + V for x € X. Then

(1.1) Sx is open for each x € D;

(12)coSy=co(y —V)ND)cT y=(y—V)N X foreach y € E;
(1.3) F(X) N K c S(D) by (a); and

(1.4) F(L)\K € S(Ly N D) = (Ly N D) + V by (b).

Therefore, by Theorem 1, F and T have a coincidence point x,, € X; that
is, Fx, N (x, + V) # &.

Remarks. 1. Note that if F is compact, then, by putting F( X ) = K, the
coercivity condition (b) holds trivially.
2. Note that X does not need to have the relative topology w.r.t. E.

COROLLARY 4.1. Let X be a convex space, E a locally convex Hausdorff
t.v.s. containing X as a subset, F € A (X, E), and K a nonempty compact
subset of E. Suppose that

(a) F(X)NKcX;and

(b) for each N € (X ), there exists a compact convex subset L, of X
containing N such that F(Ly)\ K C L.

Then for each V € 7, F has a V-fixed point.



182 PARK AND KIM

Proof. This follows from Theorem 4 with X = D.
Remark. Because of (a) and (b), we have F(X) C X.

COROLLARY 4.2. Let X be a nonempty convex subset of a locally convex
Hausdorff t.v.s. E. Suppose that either () F € A (X, X) or, more generally,
(i) F € AI(X, X). If F is compact, then F has a fixed point x, € X; that is,
X, € Fx,.

Proof. (i) For each VV € 77, by Corollary 4.1 with F( X ) = K, there exist
Xy, ¥y € X such that y, € Fx,, and y, —x, € V. Since F(X) is con-
tained in the compact set K, we may assume that y, converges to some
x, € K. Then x, also converges to x,. Since the graph of F is closed in
X X K, we have x, € Fx,,.

(ii) Let M = coF(X). Then M C X since F(X)C X and X is convex.
Also M is o-compact [58, Proposition 1(3)]. Since F € AI(X, M), there
exists an F € A (M, M) such that Fx C Fx for each x € M. Therefore, by
@), F has a fixed point x, € M; that is, x, € Fx, € Fx,.

This completes our proof.

Particular forms. Corollary 4.2 is due to Park [77, Theorems 3(iii) and 4]
and extends many known fixed point theorems for locally convex
Hausdorff t.v.s. as follows:

1. For C instead of 2, Corollary 4.2 reduces to Hukuhara [44] which
includes earlier well-known results of Brouwer [14], Schauder [86, 87],
Tychonoff [103], Mazur [60], and Singbal [94].

2. For K instead of 9, Corollary 4.2 reduces to Himmelberg [38], which
extends Kakutani [50], Hukuhara [44], Bohnenblust and Karlin [12], Fan
[26], and Glicksberg [30].

3. For K, instead of (., Corollary 4.2 is due to Simons [92], Lassonde
[56], and Ben-El-Mechaickh [5].

4. For K instead of ¢, Corollary 4.2 is due to Lassonde [58].

5. For the class A of approachable maps instead of 2., Corollary 4.2 is
due to Ben-El-Mechaiekh and Deguire [7, 8].

6. For V, instead of 2, Corollary 4.2 is due to Powers [85] and Park
[70].

7. For V7 instead of A?, Corollary 4.2 is due to Park ef al. [81].
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