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Abstract

Recently, the author and J.S.Bae [14] removed the paracompactness
assumption in Bellenger’s theorem [3] on the existence of maximizable
quasiconcave functions on convex spaces. Fan [8] and Simons [20] ap-
plied particular forms of this theorem to various problems. In this
paper, we give some other applications of the existence theorem to the
Fan type nonseparation theorems and the existence of maximizable lin-
ear functionals having certain preassigned properties.

Supported in part by the KOSEF in 1989.

Typeset by AMS-TEX
1



2 SEHIE PARK

1. Introduction

Recently, the author and J.S.Bae [14, Theorem 1] removed the paracom-

pactness assumption in Bellenger [3, Theorem 1] on the existence of max-

imizable quasiconcave functions on convex spaces. This existence theorem

extends and unifies earlier works of Fan [8, Theorem 8] and Simons [20,

Theorem 0.1].

Fan [8] used his theorem to obtain coincidence and fixed point theorems,

matching theorems for closed coverings of convex sets, and a generalization

of the Knaster-Kuratowski-Mazurkiewicz-Shapley theorem. Recently, the

author and S.K.Kim [15] applied Fan [8, Theorem 8] to obtain generalized

extremal principles originated from Mazur and Schauder.

On the other hand, Simons [18], [19], [20] and Bellenger and Simons

[4] used [20, Theorem 0.1] to obtain generalized Kakutani type fixed point

theorems, certain “approximation” theorems, fixed point theorems for non-

continuous multifunctions, and existence of zeros of multifunctions. In our

works [12], [13], our version of Bellenger’s theorem or some of its conse-

quences are used to obtain new generalized results on coincidences or fixed

points, surjectivity, existence of critical points (or zeros), matching theorems,

and many others.

In the present paper, we give some other applications of the existence

theorem of maximizable quasiconcave functions on convex spaces to the Ky

Fan type nonseparation theorems and the existence of maximizable linear

functionals with certain properties.

Section 2 deals with preliminaries. Theorem 1 is a particular form of our

version of Bellenger’s theorem; that is, the existence theorem of maximizable

linear functionals on convex sets in a topological vector space.
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In Section 3, we obtain Theorem 3, a far-reaching generalization of the

Ky Fan type nonseparation theorems due to Fan [6], [7], Reich [16], Taka-

hashi [21], and Lee and Tan [11]. Those are bases of generalizations of the

Brouwer or Kakutani type coincidence theorems for upper demicontinuous

multifunctions defined on convex subsets of a topological vector space.

Section 4 deals with noncompact version of Simons [18, Remark 4.6] on

the existence of the maximizable continuous linear functionals having certain

preassigned properties. In fact, all of the results in Section 4 are variations of

Theorem 1 and generalized versions of known results due to Fan [6], Browder

[5], Takahashi [22], and Simons [18].

2. Existence of maximizable linear functionals

A real Hausdorff topological vector space will be abbreviated to a t.v.s.

For a t.v.s. E, E∗ denotes the set of all continuous linear functionals.

A convex space X is a nonempty convex set X (in a vector space) with

any topology that induces the Euclidean topology on the closed convex hulls

of its finite subsets. A nonempty subset L of a convex space X is called a

c-compact set if for each finite set S ⊂ X, there is a compact convex set

LS ⊂ X such that L ∪ S ⊂ LS . See Lassonde [10]. Let [x, L] denote the

closed convex hull of {x} ∪ L, where x ∈ X.

Recall that an extended real-valued function g defined on a topological

space X is lower [resp. upper] semicontinuous (l.s.c.) [resp. u.s.c.] if {x ∈
X : gx > r} [resp. {x ∈ X : gx < r}] is open for each real r.

An open half-space H in a t.v.s. E is a set of the form H = {x ∈ E :

fx > t} for some nontrivial f ∈ E∗ and some real t.
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Let X be a topological space, E a t.v.s., and F : X → 2E . Then

(i) F is upper semi-continuous (u.s.c.) if for each x ∈ X and each open

set U in E containing Fx, there exists an open neighborhood N of x in X

such that F (N) ⊂ U ;

(ii) F is upper demi-continuous (u.d.c.) if for each x ∈ X and each open

half-space H in E containing Fx, there exists an open neighborhood N of x

in X such that F (N) ⊂ H [6], [7] ; and

(iii) F is upper hemi-continuous (u.h.c.) if for each f ∈ E∗ and each

real r, the set {x ∈ X : sup f(Fx) < r} is open in X; i.e., the function

sup fF : X → R∪{+∞} is u.s.c.; equivalently, for each f ∈ E∗ and each real

r, the set {x ∈ X : inf f(Fx) > r} is open in X; i.e., inf fF : X → R∪{−∞}
is l.s.c. [1], [2].

Note that u.s.c. =⇒ u.d.c. =⇒ u.h.c. and that if the multifunction F is

compact-valued, then u.d.c. ⇐⇒ u.h.c. If F,G : X → 2E are u.h.c., so is

F +G.

The following is a simple consequence of the existence theorem for maxi-

mizable quasiconcave functions on convex spaces due to the author and Bae

[14, Theorem 1].

Theorem 1. Let X be a convex space and E a t.v.s. containing X as a

subset.

(1.0) for each f ∈ E∗, f |X is continuous on X ;

(1.1) for each x ∈ X, Sx is a nonempty convex subset of E∗ ;

(1.2) for each f ∈ E∗, S−1f is compactly open in X ; and

(1.3) there exist a c-compact set L ⊂ X and a nonempty compact set

K ⊂ X such that for every x ∈ X\K and f ∈ Sx, we have fx <

max f [x, L].

Then there exist an x̂ ∈ K and an f ∈ Sx̂ such that fx̂ = max f(X).

As in our previous work [13], we obtain the following :
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Theorem 2. Let X, E, L, and K be as in Theorem 1, and P,Q : X →
2E\{∅} multifunctions. Suppose that, for each f ∈ E∗,

(2.0) f |X is continuous on X ;

(2.1) Xf = {x ∈ X : sup f(Px) ≥ inf f(Qx)} is compactly closed in X ;

(2.2) for each x ∈ K, fx = max f(X) implies x ∈ Xf ; and

(2.3) for each x ∈ X\K, fx = max f [x, L] implies x ∈ Xf .

Then there exists an x ∈
∩
{Xf : f ∈ E∗}.

In Theorems 1 and 2, we do not require any concrete connection between

topologies of X and E except (1.0). Therefore, we may assume that

(i) as a convex space, X has any topology finer than the relative weak

topology with respect to E, and

(ii) E has a topology finer than its weak topology.

Note that Theorem 2 is a base for various coincidence and fixed point

theorems, and surjectivity results on u.h.c. multifunctions defined on non-

compact convex set in our previous works [12], [13]. However, Theorem 2

does not include the Ky Fan type nonseparation theorems in [6], [7], which

were used to obtain fixed point results on u.d.c. multifunctions. In the next

section, we obtain a very general nonseparation theorem.

3. The Ky Fan type nonseparation theorems

Two subsets M, N of a t.v.s. E are said to be strictly separated by a

closed hyperplane if there exist an f ∈ E∗ and a t ∈ R such that M ⊂ {x ∈
E : fx > t} and N ⊂ {x ∈ E : fx < t}.

As a direct application of Theorem 1, we obtain the following Ky Fan type

nonseparation theorem.
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Theorem 3. Let X be a convex space, L a c-compact subset, K a nonempty

compact subset of X, E a t.v.s. containing X as a subset, and P,Q : X →
2E\{∅}. Suppose that for each f ∈ E∗,

(3.0) f |X is continuous on X ;

(3.1) X ′
f = {x ∈ X : there exists no r ∈ R such that f(Px) ⊂ (−∞, r)

and f(Qx) ⊂ (r,∞)} is compactly closed in X ;

(3.2) for each x ∈ K, fx = max f(X) implies x ∈ X ′
f ; and

(3.3) for each x ∈ X\K, fx = max f [x, L] implies x ∈ X ′
f .

Then there exists an x ∈ X such that Px and Qx can not be strictly

separated by a closed hyperplane in E.

Proof. Suppose that for each x ∈ X, Px and Qx can be strictly separated

by a closed hyperplane. Define S : X → 2E
∗
by

Sx = {f ∈ E∗ : f(Px) ⊂ (−∞, r) and f(Qx) ⊂ (r,∞) for some r ∈ R}

for each x ∈ X. Then Sx is nonempty and convex. By (3.1), S−1f = X\X ′
f

is compactly open for each f ∈ E∗. Note that (3.3) implies (1.3) in Theorem

1. Therefore, by Theorem 1, there exist an x̂ ∈ K and an f ∈ Sx̂ such that

fx̂ = max f(X). Note that x̂ ∈ S−1f = X\X ′
f , which contradicts (3.2).

This completes our proof.

Condition (3.1) is a certain “continuity” condition. In fact, let us consider

(3.1)′ P and Q are u.d.c.

Note that (3.1)′ =⇒ (3.1), but not conversely.

For example, let X = [0, 1] in E = R, P = 1X , Qx = {x} for x ∈
X\(1/3, 2/3) and Qx = {1} for x ∈ (1/3, 2/3). Then (3.1) holds, but Q is

not continuous; that is, not u.d.c.
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Note also that X ′
f ⊂ Xf , and hence (3.2) =⇒ (2.2) and (3.3) =⇒ (2.3).

Therefore, if we assume (3.1)′ in Theorem 3, then we obtain the conclusion

of Theorem 2 as follows :

(∗) There exists an x ∈ X such that x ∈
∩
{Xf : f ∈ E∗}.

Since the conclusion of Theorem 3 is more concrete than (∗), Theorem 3

does not follow from Theorem 2.

Condition (3.2) is a generalized “boundary” condition. In fact, (3.2) is

equivalent to

(3.2)′ for each x ∈ K ∩ BdX, fx = max f(X) implies x ∈ X ′
f , where Bd

denotes the boundary w.r.t. E.

This can be shown as in Fan [8, p.528]. Moreover, if P = 1X , then (3.2) is

related to certain whereabouts of values of Q on BdX. For details, see [12].

Some particular forms of (3.2) for X = K have appeared in literature as

follows :

(3.2.1) (Fan [6, Theorem 8]) For each x ∈ δ(X) , IPx(x) ∩X ̸= ∅ and

OQx(x) ∩X ̸= ∅.
(3.2.2) (Fan [6, Theorem 5]) For each x ∈ δ(X) , Px ∩ IX(Qx) ̸= ∅

[Px ∩OX(Qx) ̸= ∅].
(3.2.3) (Fan [7, Theorem 3]) For each x ∈ X and each f ∈ E∗ such that

fx = max f(X), there exists u ∈ Px and v ∈ Qx such that fu ≥ fv.

(3.2.4) (Reich [16, Proposition 2.1]) Qx is compact and Px∩ IX(Qx) ̸= ∅
[Px ∩OX(Qx) ̸= ∅] for all x ∈ X.

(3.2.5) (Takahashi [21, Theorem 8]) For any x ∈ X and f ∈ E∗, either

f(x− u) ≤ f(x− v) for all u ∈ Px and v ∈ Qx or 0 > infy∈X f(x− y).

(3.2.6) (Lee and Tan [11, Theorem 3]) For each x ∈ δ(X), Px∩ IX(x) ̸= ∅
and Qx ∩OX(x) ̸= ∅.
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(3.2.7) (Lee and Tan [11, Theorem 1]) For each x ∈ X, there exist two

points u ∈ Px, v ∈ Qx, two nets uα, vα in E, and a net yα in X such that

uα → u, vα → v and uα − vα = λα(x− yα) for some net λα in (0,∞).

Here, the algebraic boundary δ(X) of X [6] is defined by

δ(X) = {y ∈ X : there exists z ∈ K such that

y + λz /∈ X for all λ > 0}.

Note also that

IA(x) = {x+ λ(y − x) : y ∈ A, λ ≥ 0},

OA(x) = {x+ λ(y − x) : y ∈ A, λ ≤ 0}

for A ⊂ E and x ∈ E,

IX(Qx) = {v + a(y − x) : v ∈ Qx, y ∈ X, a ≥ 0},

OX(Qx) = {v + a(y − x) : v ∈ Qx, y ∈ X, a ≤ 0},

and — denotes the closure w.r.t. E.

It is shown that (3.2.1) =⇒ (3.2.2) in [6] and (3.2.2) =⇒ (3.2.3) in [7]. If

Qx is compact, (3.2.2) =⇒ (3.2.4) [16] and (3.2.4) =⇒ (3.2.7) [11]. It is also

shown that (3.2.6) =⇒ (3.2.7) in [11]. It is easy to check (3.2.3) =⇒ (3.2),

(3.2.5) =⇒ (3.2), and (3.2.7) =⇒ (3.2).

Finally, Condition (3.3) is a “coercivity” or “compactness” condition. For

X = K, (3.3) is automatically satisfied and Theorem 3 reduces to Simons

[18, Remark 4.6, 1st Statement].

Therefore, we can state the following generalization of the above men-

tioned results (3.2.1)-(3.2.7).
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Corollary 3.1. (Simons [18]) Let X be a nonempty compact convex subset

of a t.v.s. E, and P,Q : X → 2E\{∅} u.d.c. multifunctions. If (3.2) holds,

then there exists an x ∈ X such that Px and Qx can not be strictly separated

by a closed hyperplane.

Note that all coincidence or fixed point theorems on u.d.c. multifunctions

in Ky Fan [7], [8] and Granas and Liu [9, Theorems 10.1–10.5] are conse-

quences of Theorem 3 or Corollary 3.1. However, those results are already

generalized extensively by applying Theorem 2 in our previous work [13].

Only one exception not treated in [13] can be extended as follows :

Theorem 4. If, in addition to the hypothesis of Theorem 3, for each x ∈ X,

Px and Qx are open convex subsets of E, then P and Q have a coincidence

point x ∈ X, that is, Px ∩Qx ̸= ∅.

Proof. Suppose Px ∩Qx = ∅ for all x ∈ X. Recall the well-known fact that

two disjoint open convex sets in a t.v.s. can be strictly separated by a closed

hyperplane. This contradicts Theorem 3.

Note that, for X = K and u.d.c. P and Q, Theorem 4 reduces to Fan [7,

Theorem 4]. Note also that Theorem 4 may not follow from Theorem 2.

4. Maximizable linear functionals with certain properties

In this section, we consider existence problems on maximizable linear func-

tionals with certain preassigned properties. Our results generalize earlier

works of Simons [18], Fan [6], Browder [5], and Takahashi [22] .

The following is a contrapositive of Theorem 2.
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Theorem 5. Let X, L, K, E, and P, Q be as in Theorem 3. Suppose that

(5.0) for each f ∈ E∗, f |X is continuous on X ;

(5.1) for each f ∈ E∗, Xf = {x ∈ X : sup f(Px) ≥ inf f(Qx)} is com-

pactly closed ;

(5.2) for each x ∈ X, there exists an f ∈ E∗ such that sup f(Px) <

inf f(Qx); and

(5.3) for each x ∈ X\K, fx = max f [x, L] implies x ∈ Xf .

Then there exists an x ∈ K and an f ∈ E∗ such that fx = max f(X) and

sup f(Px) < inf f(Qx).

Proof. Define S : X → 2E by

Sx = {f ∈ E∗ : sup f(Px) < inf f(Qx)}

for each x ∈ X. Then each Sx is nonempty by (5.2), and convex. For each

f ∈ E∗, S−1f = X\Xf is compactly open by (5.1). Also (5.3) implies (1.3).

Therefore, by Theorem 1, the conclusion follows.

For the case X = K, if P and Q are u.h.c. (dual-u.s.c. in [18]), Theo-

rem 5 reduces to Simons [18, Remark 4.6, 2nd Statement], which, in turn,

generalizes Fan [6, Theorem 6].

Corollary 5.1. Let X, L, K, E and P, Q be as in Theorem 3. Suppose

that (5.0), (5.1), (5.3), and the following hold.

(5.2)′ for each x ∈ X, Px and Qx are convex, and Px ∩Qx = ∅.
If either

(A) E∗ separates points of E and, for each x ∈ X, Px and Qx are com-

pact, or

(B) E is locally convex and, for each x ∈ X, one of Px and Qx is compact,
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then there exist an x ∈ K and an f ∈ E∗ such that fx = max f(X) and

sup f(Px) < inf f(Qx).

Proof. By the standard separation theorems in a t.v.s. [17], (5.2)′ with (A)

or (B) implies (5.2). Therefore, by Theorem 5, we have the conclusion.

For the case X = K, if P and Q are u.h.c., then Corollary 5.1(B) reduces

to Simons [18, Remark 4.6, 3rd Statement].

If P = 1X in Corollary 5.1, then we have

Corollary 5.2. Let X, L, K, E, and Q be as in Theorem 3. Suppose that

(5.0) for each f ∈ E∗, f |X is continuous on X ;

(5.1)′ for each f ∈ E∗, Xf = {x ∈ X : fx ≥ inf f(Qx)} is compactly

closed ;

(5.2)′′ for each x ∈ X, Qx is convex and x /∈ Qx; and

(5.3)′ for each x ∈ X\K, fx = max f [x, L] implies x ∈ Xf .

If either

(A) E∗ separates points of E and Qx is compact for each x ∈ X ; or

(B) E is locally convex,

then there exists an x ∈ K and an f ∈ E∗ such that

fx = max f(X) < inf f(Qx).

For the case X = K, if Q is u.h.c., then Corollary 5.2(B) reduces to

Simons [18, Remark 4.6, 4th Statement], which, in turn, generalizes Browder

[5, Theorem 8] and Takahashi [22, Theorem 11].

We conclude this paper with metric analogues of two of the above results

in the case when E is normed.
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Theorem 6. Let X be a nonempty convex subset of a normed vector space

E, L a c-compact subset, K a nonempty compact subset of X, h : X → R

an u.s.c. function, and P,Q : X → 2E\{∅}. Suppose that

(6.1) for each f ∈ E∗ with ∥f∥ ≤ 1, Xf = {x ∈ X : sup f(Px) + hx ≥
inf f(Qx)} is compactly closed ;

(6.2) for each x ∈ X, Px and Qx are convex, and dist (Px,Qx) > hx ;

and

(6.3) for each x ∈ X\K and each f ∈ E∗ with ∥f∥ ≤ 1, fx = max f [x, L]

implies x ∈ Xf .

Then there exist an x ∈ K and an f ∈ E∗ such that ∥f∥ ≤ 1, fx =

max f(X), and sup f(Px) + hx < inf f(Qx).

Proof. We use Theorem 1. Note that (1.0) holds since X has the relative

topology with respect to E. Define S : X → 2E
∗
by

Sx = {f ∈ E∗ : ∥f∥ ≤ 1, sup f(Px) + hx < inf f(Qx)}

for x ∈ X. Then each Sx is convex, and nonempty by (6.2). Further, for

each f ∈ E∗, if ∥f∥ > 1, then S−1f is empty, and if ∥f∥ ≤ 1, then

S−1f = {x ∈ E∗ : sup f(Px) + hx ≤ inf f(Qx)}.

In any case, S−1f is compactly open. Since (6.3) implies (1.3), all of the

requirements of Theorem 1 are satisfied. Therefore we have the conclusion.

For the case X = K, if P and Q are u.h.c., then Theorem 6 reduces to

Simons [18, Remark 4.6, 5th Statement]. For P = 1X , we have the following :
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Corollary 6.1. Let X, E, L, K, h, and Q be as in Theorem 6. Suppose

that

(6.1)′ for each f ∈ E∗ with ∥f∥ ≤ 1, Xf = {x ∈ X : fx+ hx ≥ inf f(Qx)}
is compactly closed ;

(6.2)′ for each x ∈ X, Qx is convex and dist (x,Qx) > hx ; and

(6.3) for each x ∈ X\K and each f ∈ E∗ with ∥f∥ ≤ 1, fx = max f [x, L]

implies x ∈ Xf .

Then there exist an x ∈ K and an f ∈ E∗ such that ∥f∥ ≤ 1 and fx =

max f(X) < inf f(Qx)− hx.

For the case X = K, if Q is u.h.c., then Corollary 6.1 reduces to Simons

[18, Remark 4.6, 6th Statement], which, in turn, generalizes Browder [5,

Theorem 9].
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