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ON G~ERALIZED EXTREMAL PRINCIPLES

SEHIE PARK AND SUNG KI KIM

In this paper we obtain generalized and strengthened versions of
the extremal principle of S. Mazur and J. Schauder [5J. We use the
following generalization of the existence theorem of minimizable quasi­
convex functions on convex spaces due to Ky Fan [2, Theorem 8J.

THEOREM 1. Let X be a convex space, and (f) a nonempty convex set
of 1. s. c. quasiconvex real functions on X. Let S be a subset of XX(f)
such that

(a) for each ifJE(f), S(ifJ) = {XEX : (x, ifJ)ES} is open in X, and
(b) for each xEX, S(x) = {ifJE(f) : (x, ifJ)ES} is convex and nonempty.
Then either there exists a (YhifJl)ES such that ifJl(Yl)=min ifJl(X),

or, for any c-compact subset L of X and nonempty compact subset K
of X, there exists a (Y2' ifJ2) E S such that

Y2EX\K and ifJ2(Y2)::;;inf ifJ2(L).

Theorem 1 is due to the first author and J. S. Bae [6, Theorem 2J.
Note that a generalization of Fan [2, Theorem 8J is given by J. C.
Bellenger [lJ. Recently, in [6, Theorem 1J, the paracompactness
assumption on X in [lJ is removed.

In Theorem 1, a convex space X is a nonempty convex set (in a
vector space) with any topology that induces the Euclidean topology
on the convex hulls of its finite subsets [4J. A nonempty subset L of
a convex space X is called a c-compact set if for each finite subset
ScX, there is a compact convex subset LscX such that L UScLs
[4J.

A real-valued function f: X-+R on a topological space X is lower
[resp. upperJ semicontinuous (1. s. c.) [resp. u. s. c. J if {xEX: fx>r}
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[resp. {XEX :fx<rlJ is open for each rER; if X is a convex set
in a vector space, then f is quasiconcave [resp. quasiconvex] whenever
{xEX : fx>rl [resp. {xEX : fx<rl J is convex for each rER.

From Theorem 1, we have the following:

THEOREM 2. Let X be a convex space and h : X-'>R a 1. s. c. quasi­
convex function such that for some c-compact subset L of X,

K= {yEX : h(y)~inf h(L)}

is nonempty and compact. Then h has a nonempty compact minimal set
{YOEX : h(Yo)=min heX)} in K.

Proof. Put q)= {h} and S= {(x, h) : XEX} =XXq) in Theorem l.
Since (a) and (b) hold automatically, by Theorem 1, h has a minimal
point yoEK. Since the minimal set is the intersection

n {yEK: h(y)~h(x)}
ZEX

of closed subsets of the compact set K, it is compact.

Now we consider reflexive Banach spaces.

THEOREM 3. Let X be a nonempty convex set in a reflexive Banach
space E and h : X-'>R a 1. s. c. quasiconvex function satisfying the fol­
lowing coercivity condition:

(*) for some nonempty closed bounded convex subset L of X, the set

K= {yEX : hey) ~inf h(L)}

is nonempty closed bounded.
Then h attains its minimum at some yoEK.

Proof. Let us switch to the weak topology. For any rER, the set
{xEX : h(x)~r} is closed and convex, hence weakly closed. This
implies that h is weakly 1. s. c. Further, L is weakly c-compact and
K is weakly compact. Therefore, by Theorem 2, the conclusion
follows.

From Theorem 3. we have the following well-known result of
Mazur and Schauder [5J.
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COROLLARY 1. Let X be a nonempty closed convex set in a reflexive
Banach space X and h : x-R a 1. s. c. quasiconvex and coercive (i. e.,
Ihex) 1_00 as Ilxll- DO ) function. If h is bounded from below, then h

attains its minimum at some yoEX.

Proof. It suffices to show that coerciveness implies (*) in Theorem
3. Let d=inf heX). Then we can find p>o such that L=B(O, p) nX
=I=,p and h(y»d+1 for all yEX\L, where B denotes the closed ball.
Note that

K= {yEX : hey) ::;;inf h(L)} cL,

and hence K is bounded.

The following example shows that Theorems 2 and 3 properly
generalize Corollary 1.

EXAMPLE. Let X=R, L= [0, 1J, and K= [1, 2J. For any aER,
define h : X-R by

la if x<l
h(x)= a-I if l:S:;x::;; 2

a if x>2.

Clearly, h is 1. s. c. and quasiconvex. Note that h satisfies all the
requirements of Theorems 2 and 3. However, h is not coercive, and
hence Corollary 1 is not applicable.

If X is bounded in Corollary 1, then the coercivity condition IS

satisfied automatically. Hence, we have

CoROLLARY 2. Let X be a closed bounded convex set in a reflexive
Bana.ch space E, and h : X -R a 1. s. c. quasiconvex function. Then h
attains its minimum on X.

Finally, note that Mazur and Schauder applied Corollary 1 to a
number of concrete problems in calculus of variations; these results
were never published. See Granas [3J.
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