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Abstract

We obtain characterizations of metric completeness using certain partial orders and, by
applying them, we improve various formulations of Ekeland’s celebrated variational
principle given by Caristi-Kirk-Browder, Kasahara, Siegel, Park, and Dancs-Hegediis-
Medvegyev.

In this paper, we obtain characterizations of metric completeness using certain partial
orders, and then, by applying them, we improve various formulations of Ekeland’s
celebrated variational principle for approximate solutions of minimization problems.
Consequently, previous results of Caristi-Kirk-Browder [5], Kasahara [4], Siegel [11],
Park [8], and Dancs-Hegediis-Medvegyev [1] are unified and generalized.

Let {F.}.c; be a family of nonempty subsets of a set X, where I is a simply ordered
set, such that

a<pin I iff FyCF,.
Then we can define a partial order < on X corresponding to {F.} by
z<y in X iff z=y or there exists an eI such that z&£F, and y=F,.

LEMMA. (X, <) is a poset.

Proof. Reflexivity is clear. For antisymmetry, suppose that z<y, y<z, and z+y,
Thus z&F,, y=F, and z&F;, y&F; for some a,f=I, Therefore, either F,CF; or
FyCF, leads a contradiction. For transitivity, suppose that z&£F,, y=F,, and y&Fg,

zeF; for some @, =1, Then we should have F;CF,, and hence z¢£Fs, z=F; Therefore,
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<y and y<z imply =<z,

By a Cantor sequence we mean a sequence {Fi}:, of nonempty closed subsets of a metric
space (X, d) such that
F,CF;; and diam F;—( as i—co,
The partial order < of X corresponding to a Cantor sequence will be called a Cantor order.

Now we have our characterizations of metric completeness.

THEOREM 1. For any meiric space (X,d), the following are equivaleni:

(1) (X,d) is complete.

(ii) For any Cantor sequence {Fj} of X, N, F; is a singleton {p} for some p=X,

(iii) For any Cantor order < of X, it has the greatest element p=X,

(iv) For any Cantor sequence {F}} of X, any sequence {z} such that z;=F; has a unique
upper bound p=X w.r.t. its Cantor order, z—p, and p is independent of (z).

Proof. ()<(ii) This is well-known. In fact, (i)=>(ii) is due to G. Cantor, and (i)=>
(i) to C. Kuratowski [6].

(i)=(iii) For any z=X, z+p, we have z=UZ,F¢. Then z&F; for some 7. Since
p=F;, we have z<p.

(iii))=(iv) Since p is the greatest, we have z;<p. Suppose that z;<g for each . Then
g<p. Suppose ¢<p. Then ¢g&£F; and p=F; for some j. Then ¢<lz; a contradiction.
Therefore, p is the only upper bound of the nondecreasing sequence {z;}. '

(iv)=>(ii) Choose a sequence {z:} such that z;=F; and let p be the upper bound of {z;].
Suppose that pe£N,F;. Then peEF; for some i, This implies p<z;, a contradiction.
Therefore p= N, F;. Since diam F—0 as i—oo, N F;={p). This also shows that

zi—p in (iv),
From Theorem 1, we obtain the following generalization of [1, Theorem 3. 1].

THEOREM 2. Let (X,d) be a metric space, @ : X—2"\{$} a set-valued map, and zo=X
such that
(1) (=) is co»lzplete,
(2) for any z,y=X, yE(f(?:_) implies @(y)CGT(;), and
(3) there exists a sequence {z}7, in X such that
21 EP(z;) and diam @(z)—0 as i—co,

Then @ has a stationary point p in ®(z,), that is, D(p)= {p}, and z—p.
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Proof. Since @(zi41)CP(x;) for each i, by Lemma, there exists a Cantor order < on X
corresponding to {@(z;)}. Since @(zy) is complete, by Theorem 1, {z;} has a unique
upper bound p=X such that N, #(z;)={p} and z,—p. Now it remains to show that
# is a stationary point of @. Since p=®(z;) for each i, ®(p)CP(z;) by (2). Therefore,
P(B)CNizo P(@)=1{p}. Since D(p)#¢, we have O(p)={p).

In [1, Theorem 3,1] the following condition is assumed instead of (3) in Theorem 2,
(8) z=0(z) for each z=X, and, for any sequence {2}, in X such that z,,,=0(z),
we have d(z;, zi1,)—0 as i—oo,
Clearly (3)’ implies (3) (cf. [17).

Theorem 2 can also be proved by the results in [3]. In Theorems 1 and 2, we used
only a part of the properties of a metric d, Howej.rer, for convenience, we assumed that
d is a metric.

Note that Theorems 3.1 and 3.2 in [1] are simple consequences of Theorem 2,

We now show that Siegel’s main result in [11] is a consequence of Theorems 1 and 2.

Let X be a complete metric space and F: X—R(J {+ )} a function, =+oo, bounded
from below. Let & be the family of selfmaps f of X satisfying

F(fz)<F(z)—-d(z, fz), z=X.
Note that & is closed under composition and that if F is Ls.c. then ¥ is closed under
countable composition [117.

THEOREM 3. [11] Let &€ CF be closed under composition. Let quXi. such that F(zy)
<+oo,

(@) If & is closed under countable composition, then there ezists an f =% such that
Z=fz, and gi=% for each g=Z.

(b) If each g=% is continuous, then there exist a sequence f[i€F and a point F=lim;._..
Sfificrfi(@y) such that gi=z for each gEZ.

Proof. Without loss of generality, we may assume that the identity map 1y belongs to
&. Let Z(2)={gz|g=Z}. We choose sequences {z}5, in X and {fi}3, in & by induc-
tion as follows: If & (z,)={z;}, then set z,;,=z; and let fi; be any ‘map in &, If
Z(z)= {x}, then choose fi;, €% and set z;,= finziEZ (x;) such that

d(zi, )2 (diam & (z))/2—1/2%
Then we have

F(ziy) <F(z) —d(z;, xli-t—l} s
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and {F(z;)} is nonincreasing. Since F' is Z£+o0, bounded from below, and F(zq)< oo,
we have d(z;, zi4)—0 as i—co, Therefore, diam & (z,)—0 as i—oo, Since & is closed
under composition, we have & (2i11) CZ (;). Since diam & (#;)—0 as i—oo, by Theorem
1, z—z for some zX,

(@) Let f=IIz, fie¥. Then i=fz,. Since 2=z, fi)z: for each i, we have
ZEZ (z;). Since diam & (#;)—0, we have {Z} =N, & (z;). It remains to show gi=%
for each g%, Since gi=g(Il;ziy, f)z/EZ (2;) for each i, we must have gi=z.

(b) Let §(z)=%(z) for each z=X. Then @ : X—2X\ {4} satisfies the hypothesis of
Theorem 2. In fact, (1) is clear. Since & is closed under composition and each g% is
continuous, (2) also holds. For the sequence {z;}, we have diam @(z;)—0 as i—co,
Therefore (3) holds. Now, by Theorem 2, @ has a stationary point F=®(z,) such that
z;—Z, that is, =lim;_fifi_;---fi(x,). Since gz=@(z)=(z} for each g=%, we must

have gi=%.

In the proof of (b), the continuity of each map in & is needed only for the condition
(2). For &€={(g"}, the class consisting of g and its finite iterates, certain condition, e.g.
so-called orbital continuity, on g suffices to guarantee the condition (2). For such choice
of & one has z=lim;... g'z, as in the Banach contraction principle.

An improved version of Theorem 3 is the following: .

THEOREM 4., Let X be a metric space, and F:X—>RU{+o} a function, FE-+oo,
bounded from below. Let €>0 and 23>0 be given, and a point usX such that Flu)<
infyF+e. Let A={zeX|F(z)<F(u)—el-'d(s,z)) be complete and F be the family of
selfmaps f of X satisfying

F(fz)<F(z)—el'd(z, fz), z=X.
Let €CF be closed under composition. .

(@) If & is closed under countable composition, then there exists an fE=& such that
Z=fucsA and gi=3% for each g=Z.

(b) If each g=% is continuous, then there exist a sequence [iE€Z and a point i=
lim;.. fifig L) EA such that gi=2z for each g=Z.

Proof. Note that for any f=F, we have fFACA. In fact, for any z=A4,

F(z)<F(u)—ex'd(u,z) and F(fz)<F(z)—erd(z, fr)
imply
F(fz) <F(u)—exd(u, fz).
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Now replacing X and 4 in Theorem 3 by A and ei'd, respectively, we obtain the

consclusion.

Note that if X is complete and F is Ls.c. then A is closed and hence complete.
Also note that
AcC {zeX|F(z)<F(), d(u,z)<i}CB(u, 1),
because for any z=A we have
e-'d(u, z) <F(w) — F(z) <F(2) —infxF<e,
Therefore, comparing with Theorem 3, Theorem 4 gives the geometric location of the
common fixed point.

Moreover, Theorem 3 follows from Theorem 4, In fact, for any zyeX with F(z)
<+oo, we can find an €0 such that F(z,)<infyF-+e If 0<e<l1, then F(fz)<F(z)
—d(z, fz) implies F(fz)<F(z)—ed(z, fz) for each f=F. Therefore, Theorem 3 follows
from Theorem 4 for 2=] and A={z&X|F(z)<F(z,)—ed(z,z)}. If e<1, then by
choosing F;=F/e, we have F;(z,)<infyF,+1 and F,(fz)<F(z)—¢'d(z, fz) for z=X
and f=F, which reduces to the first case.

Finally, we give simple proofs of Ekeland’s variational principle. In order to do this,
consider the following equivalent formulations of Ekeland’s theorem in [8], whose
equivalency is a simple consequence of a metatheorem in [9].

THEOREM 5. Let X be a complete metric space, and F: X—R\J {+ o} a _E..s.c. Junction,
=40, bounded from below. Let €>0 be given, a point u=X such that F(u) <infyF+e,
and A= {z€X|F(z)<F(u) —ed(u, z)}.

Then the following equivalent statements hold:

(i) There exists a point v=A such that

Vw#v, F(w)>F(v)—ed(v, w).
(ii) If T : A—2X satisfies the condition:
Vze AN\ T(z) IyeX\ |z} such that
F(y) <F(z)—ed(z,y),
then T has a fized point vE A, that is, v=T(v),
(iii) If f: A—>X is a map satisfying
. F(fz)<F(z)—ed(z, fz)
Sor all z=A, then f has a fized point.
(v) If T:—-2"\{¢) satisfies the condition:
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veeA Vye T(z), F(»)<F(z)—ed(z,9),
then T has a stationary point vEA,
Proof. (iii) Note that fACA. Let & be the family of selfmaps f of A satisfying F(fz)
<F(z)—ed(z, fz), z=A. Since F is Ls.c,, A is complete and, as we noted earlier, F is
closed under countable composition. Therefore, by Theorem 3(a) or 4(a), & has a common

fixed point.

More directly, we can prove Theorem 5 from Theorem 2.
Proof. (iv) Define @ : A—2% by
P(z)=(yeX|F(y) <F(z)—ed(z, )} CA
for each z=A. Then @(z) is nonempty and closed since F is Ls.c. and hence A=9(u)
is closed. Therefore, (1) holds. If y=0(z) and z&®@(y), then
F(y)<F(z)—ed(z,y) and F(z)<F(y)—ed(y,2)
imply
F(2)<F(z)—cd(z, 2).
Therefore, z=®(z). Thus (2) holds. Choose u=u,. Suppose u;=A is known. If @(u)=
{u;}, then set wz=u; Otherwise, choose #;;,&®@(x;) such that
d(u;, uisy) < (diam @())/2—1/2',
Then we have
Fuin) <F(u;) —ed(ui, #ir1),
and hence d(u;, #:4,)—0 as i—oo, Thus diam @ (x;)—0. Therefore, (3) holds. Thus, by
Theorem 2, @ has a stationary point ve@(v)=A. Now ¢+ T(v) CO(v)={v} implies
{v}=T(v), and u,—v,

In Theorem 5, if A is complete, we do not need to assume that X is complete.
Actually, Theorem 5(i) is a little stronger than Ekeland’s variational principle [2], for
AC (z=X|F(2)<F@), d(u,z)<1}CB,1).

Theorem 5(iii) is known as the Caristi-Kirk-Browder fixed point theorem, and this
characterizes metric completeness. Since Theorem 1 implies Theorems 2~5, we can conclude
that Theorems 2~4 and each of Theorem 5 also characterize metric completeness (et [7;
10, 11, 12, 13D).

A simple consequence of Theorem 5(iv) or Proof (i) is also obtained by S. Kasahara

[4] for L-spaces.
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